
Sebastian Raschka

Using Deep Learning When Class
Labels Have A Natural Order
Predicting Ratings And Rankings Using
PyTorch Lightning

Lead AI Educator @ Lightning AI
Asst. Prof. of Statistics @ University of Wisconsin

@rasbt

sebastian@lightning.ai

https://sebastianraschka.com https://lightning.ai

https://sebastianraschka.com

2

https://github.com/rasbt/scipy2022-talk

Code & slides

Many real-world predictions problems  
have ordered labels

3

Islam et al. 2015, J Green Physiol Genet Genom 1:1 (22-31)

PLRV, PVY, PVX, PVS, PVA and PVM as
described by Clark and Adams (1977).
¾ After incubation the plates were

washed with washing buffer 3 times.
¾ The collected leaf samples mixed with

virus extraction buffer @ 1:10 with the
help of mortar and pestle to extract the
sap and homogenized. The six
different plates for six viruses were
filled with the sap @ 200ul for each
well with the help of micropipette.

¾ Before adding the samples into the
plates, filled 2 wells for the positive
control and 2 for the negative control
of the six viruses separately.

¾ The coated plate was again incubated
for overnight at 4o C.

Step 3
¾ Washed the plates with washing buffer

3times and then take conjugate 20ul
and added conjugate buffer 20ml
separately for each virus.

¾ Poured the plates at the rate of 200ul
for each well.

¾ Incubated the plate at 4o C overnight.
Step 4
¾ Washed the plate 3 times with washing

buffer and then take 20ml substrate
buffer and 1 PNP tablet.

¾ Mixed tablet in substate buffer.
¾ Poured the plates @ 200ul for each

well with the help of micropipette.
¾ Put the plate for 30 minutes at room

temperature and reaction was visually
observed for the development of
yellow color.

¾ The reaction was stopped by adding
50µl 3M NaOH to each well.

¾ The results were compiled by the
following scale
� Deep Yellow= strong (+++)=

Susceptible
� Moderate Yellow = Moderate(++)

= Moderately Susceptible
� No color = Free = Resistant

Table 1. Disease Rating Scale for PLRV, PVX and PVY

Index Reaction PLRV PVX PVY
0 Highly

Resistance
No visible symptoms. No visible

symptoms.
No symptoms

1 Resistance

Rolling of leaves in case of
primary infection and lower
leaves in case of secondary
infection, erect growth

Mild mottling on
the upper leaves.

Blackening and banding of
vein on few leaves. Mosaic
starting on all leaves.

2 Moderately
Resistance

Rolling of leaves extending,
leaves become stiff and leathery,
stunting of plants and erect
growth

Inter venial mosaic
symptoms on more
than one leaf.

Blackening and banding of
vein on all leaves. Narrowing
of leaves. Venial necrosis,
severe mosaic, Leaf crinkling.

3 Moderately
Susceptible

Short internodes, papery sound of
leathery leaves, rolling and
stunting of whole plants. Young
buds are slightly yellowish and
purplish

Mosaic symptoms
on all leaves.

Rugosity and leaf drop streak,
dwarfing

4 Susceptible Clear rolling of leaves, severe
stunting, few tubers and tuber
necrosis

Distinct mosaic
symptoms on all
leaves.

Lower leaves dead, drooping
collapse of plants with very
small tubers.

5 Highly
Susceptible

All above symptoms and small
number of small sized tubers.

All above
symptoms and
small number of
small sized tubers

All leaves dead, stem dead or
drying
.

24
 Islam, M. U., et al. "Screening of potato germplasm against RNA viruses and their

identification through ELISA." J Green Physiol Genet Genom 1 (2015): 22-31.

Plant disease

https://www.abrigo.com/blog/how-to-create-a-credit-risk-rating-system/

Credit risk rating

https://www.questionpro.com/blog/ordinal-scale/

Likert scale for customer satisfaction

Damage assessment

https://emergency.copernicus.eu/mapping/ems/damage-assessment

https://www.abrigo.com/blog/how-to-create-a-credit-risk-rating-system/
https://www.questionpro.com/blog/ordinal-scale/
https://emergency.copernicus.eu/mapping/ems/damage-assessment

Ordered labels? Tell me more!

4

Ordered labels? Tell me more!

5

How do ordered (ordinal) labels differ from conventional class labels

No ordering

Ordered labels? Tell me more!

6

Classification

Setosa Versicolor Virginica

No ordering

Ordered labels? Tell me more!

7

Classification

Setosa Versicolor Virginica1 2 3

8

Regression

No ordering

Setosa Versicolor Virginica1 2 3 1 2 3

Classifi

Ordered labels? Tell me more!

9

Regression

< <

No ordering

Setosa Versicolor Virginica1 2 3 1 2 3

Classifi

Ordered labels? Tell me more!

10

Regression

< <

Identical distancesNo ordering

Setosa Versicolor Virginica1 2 3 1 2 3

Classifi

Ordered labels? Tell me more!

11

Ordinal regression /
ordinal classification Regression

< <

1 2 3

Identical distancesNo ordering

Setosa Versicolor Virginica1 2 3

Classifi

Ordered labels? Tell me more!

12

Ordinal regression /
ordinal classification Regression

< <

1 2 3

Identical distancesNo ordering

Setosa Versicolor Virginica1 2 3 1 2 3

Classifi

Ordered labels? Tell me more!

13

Ordinal regression /
ordinal classification Regression

< <

1 2 3

Identical distancesNo ordering

Setosa Versicolor Virginica1 2 3 1 2 3

Classifi

≺ ≺

Ordered labels? Tell me more!

14

Ordinal regression /
ordinal classification Regression

< <

1 2 3

Identical distancesNo ordering

Setosa Versicolor Virginica1 2 3 1 2 3

Classifi

≺ ≺

Ordered labels? Tell me more!

Class labels

• but with ordering info

• and arbitrary distances

Can't we just use regular classifiers  
for ordered labels?

15

Can't we just use regular classifiers  
for ordered labels?

16

Yes, but it is not ideal

17

It is not ideal because all wrong predictions
look equally wrong to a classifier

18

1

Assume this is
the true label

It is not ideal because all wrong predictions
look equally wrong to a classifier

19

1 2

Assume this is
the true label

Wrong
prediction

It is not ideal because all wrong predictions
look equally wrong to a classifier

20

1 2 3

Assume this is
the true label

Wrong
prediction

Wrong
prediction

It is not ideal because all wrong predictions
look equally wrong to a classifier

21

1 2 3

Assume this is
the true label

Wrong
prediction

Wrong
prediction

It is not ideal because all wrong predictions
look equally wrong to a classifier

Treated equally if we compute the loss in a
regular classifier

22

1 2 3

Assume this is
the true label

Wrong
prediction

Wrong
prediction

It is not ideal because all wrong predictions
look equally wrong to a classifier

But this should be
“more wrong”

Many real-world predictions problems  
have ordered labels

23

Islam et al. 2015, J Green Physiol Genet Genom 1:1 (22-31)

PLRV, PVY, PVX, PVS, PVA and PVM as
described by Clark and Adams (1977).
¾ After incubation the plates were

washed with washing buffer 3 times.
¾ The collected leaf samples mixed with

virus extraction buffer @ 1:10 with the
help of mortar and pestle to extract the
sap and homogenized. The six
different plates for six viruses were
filled with the sap @ 200ul for each
well with the help of micropipette.

¾ Before adding the samples into the
plates, filled 2 wells for the positive
control and 2 for the negative control
of the six viruses separately.

¾ The coated plate was again incubated
for overnight at 4o C.

Step 3
¾ Washed the plates with washing buffer

3times and then take conjugate 20ul
and added conjugate buffer 20ml
separately for each virus.

¾ Poured the plates at the rate of 200ul
for each well.

¾ Incubated the plate at 4o C overnight.
Step 4
¾ Washed the plate 3 times with washing

buffer and then take 20ml substrate
buffer and 1 PNP tablet.

¾ Mixed tablet in substate buffer.
¾ Poured the plates @ 200ul for each

well with the help of micropipette.
¾ Put the plate for 30 minutes at room

temperature and reaction was visually
observed for the development of
yellow color.

¾ The reaction was stopped by adding
50µl 3M NaOH to each well.

¾ The results were compiled by the
following scale
� Deep Yellow= strong (+++)=

Susceptible
� Moderate Yellow = Moderate(++)

= Moderately Susceptible
� No color = Free = Resistant

Table 1. Disease Rating Scale for PLRV, PVX and PVY

Index Reaction PLRV PVX PVY
0 Highly

Resistance
No visible symptoms. No visible

symptoms.
No symptoms

1 Resistance

Rolling of leaves in case of
primary infection and lower
leaves in case of secondary
infection, erect growth

Mild mottling on
the upper leaves.

Blackening and banding of
vein on few leaves. Mosaic
starting on all leaves.

2 Moderately
Resistance

Rolling of leaves extending,
leaves become stiff and leathery,
stunting of plants and erect
growth

Inter venial mosaic
symptoms on more
than one leaf.

Blackening and banding of
vein on all leaves. Narrowing
of leaves. Venial necrosis,
severe mosaic, Leaf crinkling.

3 Moderately
Susceptible

Short internodes, papery sound of
leathery leaves, rolling and
stunting of whole plants. Young
buds are slightly yellowish and
purplish

Mosaic symptoms
on all leaves.

Rugosity and leaf drop streak,
dwarfing

4 Susceptible Clear rolling of leaves, severe
stunting, few tubers and tuber
necrosis

Distinct mosaic
symptoms on all
leaves.

Lower leaves dead, drooping
collapse of plants with very
small tubers.

5 Highly
Susceptible

All above symptoms and small
number of small sized tubers.

All above
symptoms and
small number of
small sized tubers

All leaves dead, stem dead or
drying
.

24
 Islam, M. U., et al. "Screening of potato germplasm against RNA viruses and their

identification through ELISA." J Green Physiol Genet Genom 1 (2015): 22-31.

Plant disease

https://www.abrigo.com/blog/how-to-create-a-credit-risk-rating-system/

Credit risk rating

https://www.questionpro.com/blog/ordinal-scale/

Likert scale for customer satisfaction

Damage assessment

https://emergency.copernicus.eu/mapping/ems/damage-assessment

https://www.abrigo.com/blog/how-to-create-a-credit-risk-rating-system/
https://www.questionpro.com/blog/ordinal-scale/
https://emergency.copernicus.eu/mapping/ems/damage-assessment

Many real-world predictions problems  
have ordered labels

24

And we can get much better performance using
ordinal regression models rather than regular classifiers

How? Let's (re)use what we already know:  
An extended binary classification framework

25

26

Input  
(Aesthetics dataset)

Niu Z, Zhou M, Wang L, Gao X, Hua G. Ordinal regression with multiple output CNN for age estimation. CVPR 2016

Possible labels:
Rating 1, 2, 3, 4, 5

How? Let's (re)use what we already know:  
An extended binary classification framework

27

Input  
(Aesthetics dataset)

Niu Z, Zhou M, Wang L, Gao X, Hua G. Ordinal regression with multiple output CNN for age estimation. CVPR 2016

Any neural network
(CNN, RNN, MLP, …)

Possible labels:
Rating 1, 2, 3, 4, 5

How? Let's (re)use what we already know:  
An extended binary classification framework

28

Input  
(Aesthetics dataset)

Niu Z, Zhou M, Wang L, Gao X, Hua G. Ordinal regression with multiple output CNN for age estimation. CVPR 2016

Any neural network
(CNN, RNN, MLP, …)

Possible labels:
Rating 1, 2, 3, 4, 5

How? Let's (re)use what we already know:  
An extended binary classification framework

! /0123# > 1
!(/0123# > 2)
! /0123# > 3
! /0123# > 4

Rank consistency (ideal)

50% probability
threshold

Input
(image example from
aesthetics dataset)

Neural network
without rank consistency

Neural network
with rank consistency

! /0123# > 1
!(/0123# > 2)
! /0123# > 3
! /0123# > 4

Rank inconsistency (not ideal)

= 1 + '
!"#

$
() *+,-./ > 1+.2! > 0.5

= 4

= 1 + '
!"#

$
() *+,-./ > 1+.2! > 0.5

= 5

Predicted ordinal label

Predicted ordinal label

Score between 0 and 1

29

Input  
(Aesthetics dataset)

Any neural network
(CNN, RNN, MLP, …)

Possible labels:
Rating 1, 2, 3, 4, 5

! /0123# > 1
!(/0123# > 2)
! /0123# > 3
! /0123# > 4

Rank consistency (ideal)

50% probability
threshold

Input
(image example from
aesthetics dataset)

Neural network
without rank consistency

Neural network
with rank consistency

! /0123# > 1
!(/0123# > 2)
! /0123# > 3
! /0123# > 4

Rank inconsistency (not ideal)

= 1 + '
!"#

$
() *+,-./ > 1+.2! > 0.5

= 4

= 1 + '
!"#

$
() *+,-./ > 1+.2! > 0.5

= 5

Predicted ordinal label

Predicted ordinal label

Score between 0 and 1

Rating > 1? yes/no→

Binary classification task

50% probability threshold

30

Input  
(Aesthetics dataset)

Any neural network
(CNN, RNN, MLP, …)

Possible labels:
Rating 1, 2, 3, 4, 5

! /0123# > 1
!(/0123# > 2)
! /0123# > 3
! /0123# > 4

Rank consistency (ideal)

50% probability
threshold

Input
(image example from
aesthetics dataset)

Neural network
without rank consistency

Neural network
with rank consistency

! /0123# > 1
!(/0123# > 2)
! /0123# > 3
! /0123# > 4

Rank inconsistency (not ideal)

= 1 + '
!"#

$
() *+,-./ > 1+.2! > 0.5

= 4

= 1 + '
!"#

$
() *+,-./ > 1+.2! > 0.5

= 5

Predicted ordinal label

Predicted ordinal labelRating > 1? yes/no→
Rating > 2? yes/no→
Rating > 3? yes/no→
Rating > 4? yes/no→

Each output node is a binary task

Predicted ordinal label is 
the sum over the yeses + 1

50% probability threshold

31

Input  
(Aesthetics dataset)

Any neural network
(CNN, RNN, MLP, …)

Possible labels:
Rating 1, 2, 3, 4, 5

! /0123# > 1
!(/0123# > 2)
! /0123# > 3
! /0123# > 4

Rank consistency (ideal)

50% probability
threshold

Input
(image example from
aesthetics dataset)

Neural network
without rank consistency

Neural network
with rank consistency

! /0123# > 1
!(/0123# > 2)
! /0123# > 3
! /0123# > 4

Rank inconsistency (not ideal)

= 1 + '
!"#

$
() *+,-./ > 1+.2! > 0.5

= 4

= 1 + '
!"#

$
() *+,-./ > 1+.2! > 0.5

= 5

Predicted ordinal label

Predicted ordinal labelRating > 1? yes/no→
Rating > 2? yes/no→
Rating > 3? yes/no→
Rating > 4? yes/no→

Each output node is a binary task

Predicted ordinal label is 
the sum over the yeses + 1

3
Predicted label:

50% probability threshold

32

Problem: rank inconsistency

33

Rating > 1? yes/no→
Rating > 2? yes/no→
Rating > 3? yes/no→
Rating > 4? yes/no→

Niu Z, Zhou M, Wang L, Gao X, Hua G. Ordinal regression with multiple output CNN for age estimation. CVPR 2016

3
Predicted label:

Greater than 4,  
but not greater than 3? 
That's paradoxical.

Problem: rank inconsistency

34

Addressing the rank inconsistency issue
leads to better predictive performance

Cao, Mirjalili, Raschka (2020)

Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation

Pattern Recognition Letters. 140, 325-331, https://www.sciencedirect.com/science/article/pii/S016786552030413X

https://www.sciencedirect.com/science/article/pii/S016786552030413X

35

Cao, Mirjalili, Raschka (2020)

Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation

Pattern Recognition Letters. 140, 325-331, https://www.sciencedirect.com/science/article/pii/S016786552030413X

! /0123# > 1
!(/0123# > 2)
! /0123# > 3
! /0123# > 4

Rank consistency (ideal)

50% probability
threshold

Input
(image example from
aesthetics dataset)

Neural network
without rank consistency

Neural network
with rank consistency

! /0123# > 1
!(/0123# > 2)
! /0123# > 3
! /0123# > 4

Rank inconsistency (not ideal)

= 1 + '
!"#

$
() *+,-./ > 1+.2! > 0.5

= 4

= 1 + '
!"#

$
() *+,-./ > 1+.2! > 0.5

= 5

Predicted ordinal label

Predicted ordinal label

Prev. ordinal regression network

CORALoral

https://www.sciencedirect.com/science/article/pii/S016786552030413X

36

Fixing rank inconsistency introduced a
limitation:  
weight-sharing constraint restricts the
network's capacity

37

Cao, Mirjalili, Raschka (2020)

Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation

Pattern Recognition Letters. 140, 325-331, https://www.sciencedirect.com/science/article/pii/S016786552030413X

3

Fig. 2. Illustration of the consistent rank logits CNN (CORAL-CNN) used for age prediction. From the estimated probability values, the binary labels are
obtained via Eq. 5 and converted to the age label via Eq. 1.

is, Cy,rk�1 � Cy,rk if rk  y and Cy,rk  Cy,rk+1 if rk � y. The clas-
sification cost matrix has entries Cy,rk = {y 6= rk} that do not
consider ordering information. In ordinal regression, where the
ranks are treated as numerical values, the absolute cost matrix
is commonly defined by Cy,rk = |y � rk |.

Li and Lin (2007) proposed a general reduction framework
for extending an ordinal regression problem into several binary
classification problems. This framework requires a cost ma-
trix that is convex in each row (Cy,rk+1 � Cy,rk � Cy,rk � Cy,rk�1 for
each y) to obtain a rank-monotonic threshold model. Since the
cost-related weighting of each binary task is specific for each
training example, this approach is considered as infeasible in
practice due to its high training complexity (Niu et al., 2016).

Our proposed CORAL framework does neither require a
cost matrix with convex-row conditions nor explicit weighting
terms that depend on each training example to obtain a rank-
monotonic threshold model and produce consistent predictions
for each binary task.

3.2. Ordinal regression with a consistent rank logits model

In this section, we describe our proposed consistent rank
logits (CORAL) framework for ordinal regression. Subsec-
tion 3.2.1 describes the label extension into binary tasks used
for rank prediction. The loss function of the CORAL frame-
work is described in Subsection 3.2.2. In subsection 3.2.3, we
prove the theorem for rank consistency among the binary clas-
sification tasks that guarantee that the binary tasks produce con-
sistently ranked predictions.

3.2.1. Label extension and rank prediction
Given a training dataset D = {xi, yi}Ni=1, a rank yi is first

extended into K � 1 binary labels y(1)
i , . . . , y

(K�1)
i such that

y(k)
i 2 {0, 1} indicates whether yi exceeds rank rk, for instance,

y(k)
i = {yi > rk}. The indicator function {·} is 1 if the inner

condition is true and 0 otherwise. Using the extended binary
labels during model training, we train a single CNN with K � 1
binary classifiers in the output layer, which is illustrated in Fig-
ure 2.

Based on the binary task responses, the predicted rank label
for an input xi is obtained via h(xi) = rq. The rank index1 q is
given by

q = 1 +
K�1X

k=1

fk(xi), (1)

where fk(xi) 2 {0, 1} is the prediction of the k-th bi-
nary classifier in the output layer. We require that { fk}K�1

k=1
reflect the ordinal information and are rank-monotonic,
f1(xi) � f2(xi) � . . . � fK�1(xi), which guarantees consistent
predictions. To achieve rank-monotonicity and guarantee bi-
nary classifier consistency (Theorem 1), the K � 1 binary tasks
share the same weight parameters2 but have independent bias
units (Figure 2).

1While the rank label rq is application-specific and defined by the user, for
example rq 2 {”bad”, ”okay”, ”good”} or rq 2 {18 years, 19 years, ...70 years},
the rank index q is an integer in the range {1, 2, ...,K}.

2To provide further intuition for the weight sharing requirement, we may
consider a simplified version, that is, the linear form logit(pi) = wx + bi or

oral

 Weight-sharing constraint

Convolutional backbone

Fully connected output layer

https://www.sciencedirect.com/science/article/pii/S016786552030413X

38

Removing the weight-sharing constraint  
(while maintaining rank consistency)  
leads to even better performance
Shi, Cao, Raschka

Deep Neural Networks for Rank-Consistent Ordinal Regression Based On Conditional Probabilities.
Arxiv preprint, https://arxiv.org/abs/2111.08851

C RN

https://arxiv.org/abs/2111.08851

39

CORN in a nutshell: chain rule for probabilities

Any neural network
(CNN, RNN, MLP, …)

40

fk (x[i]) = ̂P (y[i] > rk ∣ y[i] > rk−1)suppose
k = 2

CORN in a nutshell: chain rule for probabilities

Input data Label Rank k

Conditional probability:

"Predicted probability that the label exceeds rank k
given that it exceed rank k-1"

41

fk (x[i]) = ̂P (y[i] > rk ∣ y[i] > rk−1)
Conditional probability:

(Learned via conditional training subsets;

more details in paper)

CORN in a nutshell: chain rule for probabilities

suppose
k = 2

42

fk (x[i]) = ̂P (y[i] > rk ∣ y[i] > rk−1)
Conditional probability:

̂P (y[i] > rk) =
k

∏
j=1

fj (x[i])
Apply chain rule for probabilities to obtain unconditional probability:

CORN in a nutshell: chain rule for probabilities

suppose
k = 2

43

fk (x[i]) = ̂P (y[i] > rk ∣ y[i] > rk−1)
Conditional probability:

̂P (y[i] > rk) =
k

∏
j=1

fj (x[i])
Apply chain rule for probabilities to obtain unconditional probability:

̂P (y[i] > r2) = ̂P (y[i] > r2 ∣ y[i] > r1) ⋅ ̂P (y[i] > r1)

CORN in a nutshell: chain rule for probabilities

suppose
k = 2

44

̂P (y[i] > r2) = ̂P (y[i] > r2 ∣ y[i] > r1) ⋅ ̂P (y[i] > r1)

Left side guaranteed to be equal or less than right side

≤ 1 ≤ 1

CORN in a nutshell: chain rule for probabilities

(Rank consistency: Rank probabilities are decreasing)

45

oral
Cao, Mirjalili, Raschka (2020)

Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation

Pattern Recognition Letters. 140, 325-331, https://www.sciencedirect.com/science/article/pii/S016786552030413X

COnsistent RAnk Logits

C RN
Shi, Cao, Raschka

Deep Neural Networks for Rank-Consistent Ordinal Regression Based On Conditional Probabilities.
Arxiv preprint, https://arxiv.org/abs/2111.08851

Conditional Ordinal Regression
for Neural Networks

https://www.sciencedirect.com/science/article/pii/S016786552030413X
https://arxiv.org/abs/2111.08851

46

How do these methods compare?

47

oral

How?

Weight-sharing in output layer

(mathematical proof in paper)

oral

48

C RN

How?

Weight-sharing in output layer

(mathematical proof in paper)

Chain rule for probabilities
& conditional training sets

oral

49

C RN

How? Advantages

Weight-sharing in output layer

(mathematical proof in paper)

Chain rule for probabilities
& conditional training sets

• Easy to implement

• Reduced overfitting

• Fast

oral

50

C RN

How? Advantages

Weight-sharing in output layer

(mathematical proof in paper)

Chain rule for probabilities
& conditional training sets

• Easy to implement

• Reduced overfitting

• Fast

• Easy to implement

• Higher capacity

• Better predictive performance

51

Skipping over further mathematical details ...
How do we use this in practice?

52

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

Converting a classifier into a CORN model 
in 3 lines of code

https://raschka-research-group.github.io/coral-pytorch/

53

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

More code examples for tabular, text, and image data

Converting a classifier into a CORN model 
in 3 lines of code

https://raschka-research-group.github.io/coral-pytorch/

54

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

Any neural network
(CNN, RNN, MLP, …)

Converting a classifier into a CORN model 
in 3 lines of code

https://raschka-research-group.github.io/coral-pytorch/

55

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

Update the number of classes
1

Converting a classifier into a CORN model 
in 3 lines of code

https://raschka-research-group.github.io/coral-pytorch/

56

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

Why −1

1

Converting a classifier into a CORN model 
in 3 lines of code

https://raschka-research-group.github.io/coral-pytorch/

57

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

1

Rating > 1? yes/no→
Rating > 2? yes/no→
Rating > 3? yes/no→
Rating > 4? yes/no→

"Rating > 4? Yes"

implies Rating = 5

Converting a classifier into a CORN model 
in 3 lines of code

https://raschka-research-group.github.io/coral-pytorch/

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

2

58

Replace the standard cross entropy loss

Converting a classifier into a CORN model 
in 3 lines of code

https://raschka-research-group.github.io/coral-pytorch/

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

2

59

Converting a Classifier into a CORN Model 
in 3 Lines of Code

https://raschka-research-group.github.io/coral-pytorch/

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

3

60

Converting a classifier into a CORN model 
in 3 lines of code

Convert logits to classes

https://raschka-research-group.github.io/coral-pytorch/

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

3

61

Converting a Classifier into a CORN Model 
in 3 Lines of Code

https://raschka-research-group.github.io/coral-pytorch/

62

🎮 https://github.com/rasbt/scipy2022-talk

Code

63

64

65 https://bit.ly/3aCgSeG

https://bit.ly/3aCgSeG

66

🎮 https://github.com/rasbt/scipy2022-talk

Code

67

https://raschka-research-group.github.io/coral-pytorch/
More examples (CNN, RNN, MLP):

https://raschka-research-group.github.io/coral-pytorch/

Acknowledgements

68

William Falcon

Adrian Wälchli

Jirka Borovec

Marc Ferradou

Wenzhi Cao

Xintong Shi

Vahid Mirjalili

69

Feb 25

https://github.com/rasbt/machine-learning-book
https://sebastianraschka.com/books/

https://github.com/rasbt/machine-learning-book
https://sebastianraschka.com/books/

Contact

70

@rasbt

sebastian@lightning.ai

https://sebastianraschka.com

🎮 https://github.com/rasbt/scipy2022-talk

Code & slides

https://sebastianraschka.com

71

72

73

74

75

Additional Slides for Q&A

Converting a Classifier into a CORAL Model 
in 4 Lines of Code

76

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

https://raschka-research-group.github.io/coral-pytorch/

77

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

Converting a Classifier into a CORAL Model 
in 4 Lines of Code

https://raschka-research-group.github.io/coral-pytorch/

78

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

Converting a Classifier into a CORAL Model 
in 4 Lines of Code

https://raschka-research-group.github.io/coral-pytorch/

79

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

1

Converting a Classifier into a CORAL Model 
in 4 Lines of Code

https://raschka-research-group.github.io/coral-pytorch/

80

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

2
3

Converting a Classifier into a CORAL Model 
in 4 Lines of Code

https://raschka-research-group.github.io/coral-pytorch/

81

Full examples:

https://raschka-research-group.github.io/coral-pytorch/

2
3

4

Converting a Classifier into a CORAL Model 
in 4 Lines of Code

https://raschka-research-group.github.io/coral-pytorch/

82

CORAL Performance 6

Table 1. Age prediction errors on the test sets. All models are based on the ResNet-34 architecture.

Method Random
Seed

MORPH-2 AFAD CACD
MAE RMSE MAE RMSE MAE RMSE

CE-CNN

0 3.26 4.62 3.58 5.01 5.74 8.20
1 3.36 4.77 3.58 5.01 5.68 8.09
2 3.39 4.84 3.62 5.06 5.53 7.92

AVG ± SD 3.34 ± 0.07 4.74 ± 0.11 3.60 ± 0.02 5.03 ± 0.03 5.65 ± 0.11 8.07 ± 0.14

OR-CNN
(Niu et al., 2016)

0 2.87 4.08 3.56 4.80 5.36 7.61
1 2.81 3.97 3.48 4.68 5.40 7.78
2 2.82 3.87 3.50 4.78 5.37 7.70

AVG ± SD 2.83 ± 0.03 3.97 ± 0.11 3.51 ± 0.04 4.75 ± 0.06 5.38 ± 0.02 7.70 ± 0.09

CORAL-CNN
(ours)

0 2.66 3.69 3.42 4.65 5.25 7.41
1 2.64 3.64 3.51 4.76 5.25 7.50
2 2.62 3.62 3.48 4.73 5.24 7.52

AVG ± SD 2.64 ± 0.02 3.65 ± 0.04 3.47 ± 0.05 4.71 ± 0.06 5.25 ± 0.01 7.48 ± 0.06

Fig. 3. Graphs of the predicted probabilities for each binary classifier task on four di↵erent examples from the MORPH-2 test dataset. In all cases,
OR-CNN su↵ers from one or more inconsistencies (indicated by arrows) in contrast to CORAL-CNN.

83

Cao, Mirjalili, Raschka (2020)

Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation

Pattern Recognition Letters. 140, 325-331, https://www.sciencedirect.com/science/article/pii/S016786552030413X

! /0123# > 1
!(/0123# > 2)
! /0123# > 3
! /0123# > 4

Rank consistency (ideal)

50% probability
threshold

Input
(image example from
aesthetics dataset)

Neural network
without rank consistency

Neural network
with rank consistency

! /0123# > 1
!(/0123# > 2)
! /0123# > 3
! /0123# > 4

Rank inconsistency (not ideal)

= 1 + '
!"#

$
() *+,-./ > 1+.2! > 0.5

= 4

= 1 + '
!"#

$
() *+,-./ > 1+.2! > 0.5

= 5

Predicted ordinal label

Predicted ordinal label

Prev. ordinal regression network

CORAL

https://www.sciencedirect.com/science/article/pii/S016786552030413X

84

CORAL Architecture
3

Fig. 2. Illustration of the consistent rank logits CNN (CORAL-CNN) used for age prediction. From the estimated probability values, the binary labels are
obtained via Eq. 5 and converted to the age label via Eq. 1.

is, Cy,rk�1 � Cy,rk if rk  y and Cy,rk  Cy,rk+1 if rk � y. The clas-
sification cost matrix has entries Cy,rk = {y 6= rk} that do not
consider ordering information. In ordinal regression, where the
ranks are treated as numerical values, the absolute cost matrix
is commonly defined by Cy,rk = |y � rk |.

Li and Lin (2007) proposed a general reduction framework
for extending an ordinal regression problem into several binary
classification problems. This framework requires a cost ma-
trix that is convex in each row (Cy,rk+1 � Cy,rk � Cy,rk � Cy,rk�1 for
each y) to obtain a rank-monotonic threshold model. Since the
cost-related weighting of each binary task is specific for each
training example, this approach is considered as infeasible in
practice due to its high training complexity (Niu et al., 2016).

Our proposed CORAL framework does neither require a
cost matrix with convex-row conditions nor explicit weighting
terms that depend on each training example to obtain a rank-
monotonic threshold model and produce consistent predictions
for each binary task.

3.2. Ordinal regression with a consistent rank logits model

In this section, we describe our proposed consistent rank
logits (CORAL) framework for ordinal regression. Subsec-
tion 3.2.1 describes the label extension into binary tasks used
for rank prediction. The loss function of the CORAL frame-
work is described in Subsection 3.2.2. In subsection 3.2.3, we
prove the theorem for rank consistency among the binary clas-
sification tasks that guarantee that the binary tasks produce con-
sistently ranked predictions.

3.2.1. Label extension and rank prediction
Given a training dataset D = {xi, yi}Ni=1, a rank yi is first

extended into K � 1 binary labels y(1)
i , . . . , y

(K�1)
i such that

y(k)
i 2 {0, 1} indicates whether yi exceeds rank rk, for instance,

y(k)
i = {yi > rk}. The indicator function {·} is 1 if the inner

condition is true and 0 otherwise. Using the extended binary
labels during model training, we train a single CNN with K � 1
binary classifiers in the output layer, which is illustrated in Fig-
ure 2.

Based on the binary task responses, the predicted rank label
for an input xi is obtained via h(xi) = rq. The rank index1 q is
given by

q = 1 +
K�1X

k=1

fk(xi), (1)

where fk(xi) 2 {0, 1} is the prediction of the k-th bi-
nary classifier in the output layer. We require that { fk}K�1

k=1
reflect the ordinal information and are rank-monotonic,
f1(xi) � f2(xi) � . . . � fK�1(xi), which guarantees consistent
predictions. To achieve rank-monotonicity and guarantee bi-
nary classifier consistency (Theorem 1), the K � 1 binary tasks
share the same weight parameters2 but have independent bias
units (Figure 2).

1While the rank label rq is application-specific and defined by the user, for
example rq 2 {”bad”, ”okay”, ”good”} or rq 2 {18 years, 19 years, ...70 years},
the rank index q is an integer in the range {1, 2, ...,K}.

2To provide further intuition for the weight sharing requirement, we may
consider a simplified version, that is, the linear form logit(pi) = wx + bi or

85

CORAL Theorem
4

3.2.2. Loss function
Let W denote the weight parameters of the neural net-

work excluding the bias units of the final layer. The penul-
timate layer, whose output is denoted as g(xi,W), shares a
single weight with all nodes in the final output layer; K � 1
independent bias units are then added to g(xi,W) such that
{g(xi,W) + bk}K�1

k=1 are the inputs to the corresponding binary
classifiers in the final layer. Let

�(z) = 1/(1 + exp(�z)) (2)

be the logistic sigmoid function. The predicted empirical prob-
ability for task k is defined as

(3)bP(y(k)
i = 1) = �(g(xi,W) + bk).

For model training, we minimize the loss function

(4)

L(W,b) =

�
NX

i=1

K�1X

k=1

�(k)[log(�(g(xi,W) + bk))y(k)
i

+ log(1 � �(g(xi,W) + bk))(1 � y(k)
i)],

which is the weighted cross-entropy of K � 1 binary classi-
fiers. For rank prediction (Eq. 1), the binary labels are obtained
via

fk(xi) = {bP(y(k)
i = 1) > 0.5}. (5)

In Eq. 4, �(k) denotes the weight of the loss associated with
the k-th classifier (assuming �(k) > 0). In the remainder of the
paper, we refer to �(k) as the importance parameter for task k.
Some tasks may be less robust or harder to optimize, which
can be considered by choosing a non-uniform task weighting
scheme. For simplicity, we carried out all experiments with
uniform task weighting, that is, 8k : �(k) = 1. In the next sec-
tion, we provide the theoretical guarantee for classifier consis-
tency under uniform and non-uniform task importance weight-
ing given that the task importance weights are positive numbers.

3.2.3. Theoretical guarantees for classifier consistency
The following theorem shows that by minimizing the loss

L (Eq. 4), the learned bias units of the output layer are non-
increasing such that

b1 � b2 � . . . � bK�1. (6)

Consequently, the predicted confidence scores or probability
estimates of the K � 1 tasks are decreasing, for instance,

bP
⇣
y(1)

i = 1
⌘
� bP
⇣
y(2)

i = 1
⌘
� . . . � bP

⇣
y(K�1)

i = 1
⌘

(7)

for all i, ensuring classifier consistency. Consequently, { fk}K�1
k=1

(Eq. 5) are also rank-monotonic.

pi = �(wx + bi) with a single feature x. If the weight w is not shared across the
K � 1 equations, the S-shaped curves of the probability scores pi will intersect,
making the p˙i‘s non-monotone at some given input x. Only if w is shared
across the K�1 equations, the S-shaped curves are horizontally shifted without
intersecting.

Theorem 1 (Ordered bias units). By minimizing the loss func-
tion defined in Eq. 4, the optimal solution (W⇤,b⇤) satisfies
b⇤1 � b⇤2 � . . . � b⇤K�1.

Proof. Suppose (W, b) is an optimal solution and bk < bk+1 for
some k. Claim: replacing bk with bk+1 , or replacing bk+1 with
bk, decreases the objective value L. Let

A1 = {n : y(k)
n = y(k+1)

n = 1},
A2 = {n : y(k)

n = y(k+1)
n = 0},

A3 = {n : y(k)
n = 1, y(k+1)

n = 0}.
By the ordering relationship, we have

A1 [A2 [A3 = {1, 2, . . . ,N}.
Denote pn(bk) = �(g(xn,W) + bk) and

�n = log(pn(bk+1)) � log(pn(bk)),
� 0n = log(1 � pn(bk)) � log(1 � pn(bk+1)).

Since pn(bk) is increasing in bk, we have �n > 0 and � 0n > 0.
If we replace bk with bk+1, the loss terms related to the k-th task
are updated. The change of loss L (Eq. 4) is given as

�1L = �(k)⇥ �
X

n2A1

�n +
X

n2A2

� 0n �
X

n2A3

�n
⇤
.

Accordingly, if we replace bk+1 with bk, the change of L is given
as

�2L = �(k+1)⇥X

n2A1

�n �
X

n2A2

� 0n �
X

n2A3

� 0n
⇤
.

By adding 1
�(k)�1L and 1

�(k+1)�2L, we have

1
�(k)�1L +

1
�(k+1)�2L = �

X

n2A3

(�n + � 0n) < 0,

and know that either �1L < 0 or �2L < 0. Thus, our claim is
justified. We conclude that any optimal solution (W⇤, b⇤) that
minimizes L satisfies

b⇤1 � b⇤2 � . . . � b⇤K�1.

Note that the theorem for rank-monotonicity proposed by Li
and Lin (2007), in contrast to Theorem 1, requires a cost ma-
trix C with each row yn being convex. Under this convexity
condition, let �(k)

yn = |Cyn,rk �Cyn,rk+1 | be the weight of the loss as-
sociated with the k-th task on the n-th training example, which
depends on the label yn. Li and Lin (2007) proved that by using
training example-specific task weights �(k)

yn , the optimal thresh-
olds are ordered – Niu et al. (2016) noted that example-specific
task weights are infeasible in practice. Moreover, this assump-
tion requires that �(k)

yn � �(k+1)
yn when rk+1 < yn and �(k)

yn  �(k+1)
yn

when rk+1 > yn. Theorem 1 is free from this requirement and
allows us to choose a fixed weight for each task that does not de-
pend on the individual training examples, which greatly reduces
the training complexity. Also, Theorem 1 allows for choosing
either a simple uniform task weighting or taking dataset im-
balances into account under the guarantee of non-decreasing
predicted probabilities and consistent task predictions. Under
Theorem 1, the only requirement for guaranteeing rank mono-
tonicity is that the task weights are non-negative.

86

CORAL Rank Consistency

6

Table 1. Age prediction errors on the test sets. All models are based on the ResNet-34 architecture.

Method Random
Seed

MORPH-2 AFAD CACD
MAE RMSE MAE RMSE MAE RMSE

CE-CNN

0 3.26 4.62 3.58 5.01 5.74 8.20
1 3.36 4.77 3.58 5.01 5.68 8.09
2 3.39 4.84 3.62 5.06 5.53 7.92

AVG ± SD 3.34 ± 0.07 4.74 ± 0.11 3.60 ± 0.02 5.03 ± 0.03 5.65 ± 0.11 8.07 ± 0.14

OR-CNN
(Niu et al., 2016)

0 2.87 4.08 3.56 4.80 5.36 7.61
1 2.81 3.97 3.48 4.68 5.40 7.78
2 2.82 3.87 3.50 4.78 5.37 7.70

AVG ± SD 2.83 ± 0.03 3.97 ± 0.11 3.51 ± 0.04 4.75 ± 0.06 5.38 ± 0.02 7.70 ± 0.09

CORAL-CNN
(ours)

0 2.66 3.69 3.42 4.65 5.25 7.41
1 2.64 3.64 3.51 4.76 5.25 7.50
2 2.62 3.62 3.48 4.73 5.24 7.52

AVG ± SD 2.64 ± 0.02 3.65 ± 0.04 3.47 ± 0.05 4.71 ± 0.06 5.25 ± 0.01 7.48 ± 0.06

Fig. 3. Graphs of the predicted probabilities for each binary classifier task on four di↵erent examples from the MORPH-2 test dataset. In all cases,
OR-CNN su↵ers from one or more inconsistencies (indicated by arrows) in contrast to CORAL-CNN.

87

Fixing rank inconsistency introduced a
limitation:  
weight-sharing constraint restricts the
network's capacity

88

Cao, Mirjalili, Raschka (2020)

Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation

Pattern Recognition Letters. 140, 325-331, https://www.sciencedirect.com/science/article/pii/S016786552030413X

3

Fig. 2. Illustration of the consistent rank logits CNN (CORAL-CNN) used for age prediction. From the estimated probability values, the binary labels are
obtained via Eq. 5 and converted to the age label via Eq. 1.

is, Cy,rk�1 � Cy,rk if rk  y and Cy,rk  Cy,rk+1 if rk � y. The clas-
sification cost matrix has entries Cy,rk = {y 6= rk} that do not
consider ordering information. In ordinal regression, where the
ranks are treated as numerical values, the absolute cost matrix
is commonly defined by Cy,rk = |y � rk |.

Li and Lin (2007) proposed a general reduction framework
for extending an ordinal regression problem into several binary
classification problems. This framework requires a cost ma-
trix that is convex in each row (Cy,rk+1 � Cy,rk � Cy,rk � Cy,rk�1 for
each y) to obtain a rank-monotonic threshold model. Since the
cost-related weighting of each binary task is specific for each
training example, this approach is considered as infeasible in
practice due to its high training complexity (Niu et al., 2016).

Our proposed CORAL framework does neither require a
cost matrix with convex-row conditions nor explicit weighting
terms that depend on each training example to obtain a rank-
monotonic threshold model and produce consistent predictions
for each binary task.

3.2. Ordinal regression with a consistent rank logits model

In this section, we describe our proposed consistent rank
logits (CORAL) framework for ordinal regression. Subsec-
tion 3.2.1 describes the label extension into binary tasks used
for rank prediction. The loss function of the CORAL frame-
work is described in Subsection 3.2.2. In subsection 3.2.3, we
prove the theorem for rank consistency among the binary clas-
sification tasks that guarantee that the binary tasks produce con-
sistently ranked predictions.

3.2.1. Label extension and rank prediction
Given a training dataset D = {xi, yi}Ni=1, a rank yi is first

extended into K � 1 binary labels y(1)
i , . . . , y

(K�1)
i such that

y(k)
i 2 {0, 1} indicates whether yi exceeds rank rk, for instance,

y(k)
i = {yi > rk}. The indicator function {·} is 1 if the inner

condition is true and 0 otherwise. Using the extended binary
labels during model training, we train a single CNN with K � 1
binary classifiers in the output layer, which is illustrated in Fig-
ure 2.

Based on the binary task responses, the predicted rank label
for an input xi is obtained via h(xi) = rq. The rank index1 q is
given by

q = 1 +
K�1X

k=1

fk(xi), (1)

where fk(xi) 2 {0, 1} is the prediction of the k-th bi-
nary classifier in the output layer. We require that { fk}K�1

k=1
reflect the ordinal information and are rank-monotonic,
f1(xi) � f2(xi) � . . . � fK�1(xi), which guarantees consistent
predictions. To achieve rank-monotonicity and guarantee bi-
nary classifier consistency (Theorem 1), the K � 1 binary tasks
share the same weight parameters2 but have independent bias
units (Figure 2).

1While the rank label rq is application-specific and defined by the user, for
example rq 2 {”bad”, ”okay”, ”good”} or rq 2 {18 years, 19 years, ...70 years},
the rank index q is an integer in the range {1, 2, ...,K}.

2To provide further intuition for the weight sharing requirement, we may
consider a simplified version, that is, the linear form logit(pi) = wx + bi or

oral

 Weight-sharing constraint

Convolutional backbone

Fully connected output layer

https://www.sciencedirect.com/science/article/pii/S016786552030413X

89

Removing the weight-sharing constraint  
(while maintaining rank consistency)  
leads to even better performance
Shi, Cao, Raschka (2021)

Deep Neural Networks for Rank-Consistent Ordinal Regression Based On Conditional Probabilities.
Arxiv preprint, https://arxiv.org/abs/2111.08851

https://arxiv.org/abs/2111.08851

CORN Method 1/3

90

4

the binary subtasks. While CORAL provides this rank consis-
tency, CORAL’s limitation is a weight-sharing constraint in the
output layer. Consequently, all binary classification tasks use
the same weight parameters and only di↵er in their bias units,
which may limit the flexibility and expressiveness of an ordinal
regression neural network based on CORAL.

The proposed CORN model is a neural network for ordinal
regression that exhibits rank consistency without any weight-
sharing constraint in the output layer (Fig. 2). Instead, CORN
uses a new training procedure with conditional training subsets
that ensures rank consistency through applying the chain rule
of probability.

3.3. Rank-consistent Ordinal Regression based on Conditional
Probabilities

Given a training set D =
n
x

[i], y[i]
oN
i=1

, CORN applies a label
extension to the rank labels y[i] similar to CORAL, such that the
resulting binary label y[i]

k 2 {0, 1} indicates whether y[i] exceeds
rank rk. Similar to CORAL, CORN also uses K � 1 learning
tasks associated with ranks r1, r2, ..., rK in the output layer as
illustrated in Fig. 2.

However, in contrast to CORAL, CORN estimates a series of
conditional probabilities using conditional training subsets (de-
scribed in Section 3.4) such that the output of the k�th binary
task fk

⇣
x

[i]
⌘

represents the conditional probability1

fk
⇣
x

[i]
⌘
= P̂
⇣
y[i] > rk | y[i] > rk�1

⌘
, (2)

where the events are nested:
n
y[i] > rk

o
✓
n
y[i] > rk�1

o
.

The transformed, unconditional probabilities can then be
computed by applying the chain rule for probabilities to the
model outputs:

P̂
⇣
y[i] > rk

⌘
=

kY

j=1

f j
⇣
x

[i]
⌘
. (3)

Since 8 j, 0  f j
⇣
x

[i]
⌘
 1, we have

P̂
⇣
y[i] > r1

⌘
� P̂
⇣
y[i] > r2

⌘
� ... � P̂

⇣
y[i] > rK�1

⌘
, (4)

which guarantees rank consistency among the K � 1 binary
tasks.

3.4. Conditional Training Subsets

Our model aims to estimate f1
⇣
x

[i]
⌘

and the conditional prob-
abilities f2

⇣
x

[i]
⌘
, ..., fK�1

⇣
x

[i]
⌘
. Estimating f1

⇣
x

[i]
⌘

is a classic
binary classification task under the extended binary classifi-
cation framework with the binary labels y[i]

1 . To estimate the
conditional probabilities such as P̂

⇣
y[i] > r2 | y[i] > r1

⌘
, we fo-

cus only on the subset of the training data where y[i] > r1. As a
result, when we minimize the binary cross-entropy loss on these

1When k = 1, fk
⇣
x

[i]
⌘

represents the initial unconditional probability
f1
⇣
x

[i]
⌘
= P̂
⇣
y[i] > r1

⌘
.

conditional subsets, for each binary task, the estimated output
probability has a proper conditional probability interpretation2.

In order to model the conditional probabilities in Eq. 3, we
construct conditional training subsets for training, which are
used in the loss function (Section 3.5) that is minimized via
backpropagation. The conditional training subsets are obtained
from the original training set as follows:

S 1 : all
n⇣

x
[i], y[i]

⌘o
, for i 2 {1, ...,N},

S 2 :
n
(x[i], y[i]) | y[i] > r1

o
,

. . .

S K�1 :
n
(x[i], y[i]) | y[i] > rk�2

o
,

where N = |S 1|� |S 2|� ... � |S K�1|, and |S k | denotes the size of
S k. Note that the labels y[i] are subject to the binary label ex-
tension as described in Section 3.3. Each conditional training
subset S k is used for training the conditional probability predic-
tion P̂

⇣
y[i] > rk | y[i] > rk�1

⌘
for k � 2.

3.5. Loss Function

Let f j(x[i]) denote the predicted value of the j-th node in the
output layer of the network (Fig. 2), and let |S j| denote the size
of the j-th conditional training set. To train a CORN neural net-
work using backpropagation, we minimize the following loss
function:

L(X, y) =

� 1
PK�1

j=1 |S j|

K�1X

j=1

|S j |X

i=1

h
log
⇣

f j(x[i])
⌘
·
n
y[i] > r j

o

+ log
⇣
1 � f j

⇣
x

[i]
⌘⌘
·
n
y[i]  r j

o i
, (5)

We note that in f j(x[i]), x
[i] represents the i-th training example

in S j. To simplify the notation, we omit an additional index j
to distinguish between x

[i] in di↵erent conditional training sets.
To improve the numerical stability of the loss gradients dur-

ing training, we implement the following alternative formula-
tion of the loss, where Z are the net inputs of the last layer (aka
logits), as shown in Fig. 2, and log

⇣
�
⇣
z

[i]
⌘⌘
= log

⇣
f j
⇣
x

[i]
⌘⌘

:

L(Z, y) =

� 1
PK�1

j=1 |S j|

K�1X

j=1

|S j |X

i=1

h
log
⇣
�
⇣
z

[i]
⌘⌘
·
n
y[i] > r j

o

+
⇣
log
⇣
�
⇣
z

[i]
⌘⌘
� z

[i]
⌘
·
n
y[i]  r j

o i
. (6)

2When training a neural network using backpropagation, instead of mini-
mizing the K � 1 loss functions corresponding to the K � 1 conditional prob-
abilities on each conditional subset separately, we can minimize their sum, as
shown in the loss function we propose in Section 3.5, to optimize the binary
tasks simultaneously.

CORN Method 2/3

91

4

the binary subtasks. While CORAL provides this rank consis-
tency, CORAL’s limitation is a weight-sharing constraint in the
output layer. Consequently, all binary classification tasks use
the same weight parameters and only di↵er in their bias units,
which may limit the flexibility and expressiveness of an ordinal
regression neural network based on CORAL.

The proposed CORN model is a neural network for ordinal
regression that exhibits rank consistency without any weight-
sharing constraint in the output layer (Fig. 2). Instead, CORN
uses a new training procedure with conditional training subsets
that ensures rank consistency through applying the chain rule
of probability.

3.3. Rank-consistent Ordinal Regression based on Conditional
Probabilities

Given a training set D =
n
x

[i], y[i]
oN
i=1

, CORN applies a label
extension to the rank labels y[i] similar to CORAL, such that the
resulting binary label y[i]

k 2 {0, 1} indicates whether y[i] exceeds
rank rk. Similar to CORAL, CORN also uses K � 1 learning
tasks associated with ranks r1, r2, ..., rK in the output layer as
illustrated in Fig. 2.

However, in contrast to CORAL, CORN estimates a series of
conditional probabilities using conditional training subsets (de-
scribed in Section 3.4) such that the output of the k�th binary
task fk

⇣
x

[i]
⌘

represents the conditional probability1

fk
⇣
x

[i]
⌘
= P̂
⇣
y[i] > rk | y[i] > rk�1

⌘
, (2)

where the events are nested:
n
y[i] > rk

o
✓
n
y[i] > rk�1

o
.

The transformed, unconditional probabilities can then be
computed by applying the chain rule for probabilities to the
model outputs:

P̂
⇣
y[i] > rk

⌘
=

kY

j=1

f j
⇣
x

[i]
⌘
. (3)

Since 8 j, 0  f j
⇣
x

[i]
⌘
 1, we have

P̂
⇣
y[i] > r1

⌘
� P̂
⇣
y[i] > r2

⌘
� ... � P̂

⇣
y[i] > rK�1

⌘
, (4)

which guarantees rank consistency among the K � 1 binary
tasks.

3.4. Conditional Training Subsets

Our model aims to estimate f1
⇣
x

[i]
⌘

and the conditional prob-
abilities f2

⇣
x

[i]
⌘
, ..., fK�1

⇣
x

[i]
⌘
. Estimating f1

⇣
x

[i]
⌘

is a classic
binary classification task under the extended binary classifi-
cation framework with the binary labels y[i]

1 . To estimate the
conditional probabilities such as P̂

⇣
y[i] > r2 | y[i] > r1

⌘
, we fo-

cus only on the subset of the training data where y[i] > r1. As a
result, when we minimize the binary cross-entropy loss on these

1When k = 1, fk
⇣
x

[i]
⌘

represents the initial unconditional probability
f1
⇣
x

[i]
⌘
= P̂
⇣
y[i] > r1

⌘
.

conditional subsets, for each binary task, the estimated output
probability has a proper conditional probability interpretation2.

In order to model the conditional probabilities in Eq. 3, we
construct conditional training subsets for training, which are
used in the loss function (Section 3.5) that is minimized via
backpropagation. The conditional training subsets are obtained
from the original training set as follows:

S 1 : all
n⇣

x
[i], y[i]

⌘o
, for i 2 {1, ...,N},

S 2 :
n
(x[i], y[i]) | y[i] > r1

o
,

. . .

S K�1 :
n
(x[i], y[i]) | y[i] > rk�2

o
,

where N = |S 1|� |S 2|� ... � |S K�1|, and |S k | denotes the size of
S k. Note that the labels y[i] are subject to the binary label ex-
tension as described in Section 3.3. Each conditional training
subset S k is used for training the conditional probability predic-
tion P̂

⇣
y[i] > rk | y[i] > rk�1

⌘
for k � 2.

3.5. Loss Function

Let f j(x[i]) denote the predicted value of the j-th node in the
output layer of the network (Fig. 2), and let |S j| denote the size
of the j-th conditional training set. To train a CORN neural net-
work using backpropagation, we minimize the following loss
function:

L(X, y) =

� 1
PK�1

j=1 |S j|

K�1X

j=1

|S j |X

i=1

h
log
⇣

f j(x[i])
⌘
·
n
y[i] > r j

o

+ log
⇣
1 � f j

⇣
x

[i]
⌘⌘
·
n
y[i]  r j

o i
, (5)

We note that in f j(x[i]), x
[i] represents the i-th training example

in S j. To simplify the notation, we omit an additional index j
to distinguish between x

[i] in di↵erent conditional training sets.
To improve the numerical stability of the loss gradients dur-

ing training, we implement the following alternative formula-
tion of the loss, where Z are the net inputs of the last layer (aka
logits), as shown in Fig. 2, and log

⇣
�
⇣
z

[i]
⌘⌘
= log

⇣
f j
⇣
x

[i]
⌘⌘

:

L(Z, y) =

� 1
PK�1

j=1 |S j|

K�1X

j=1

|S j |X

i=1

h
log
⇣
�
⇣
z

[i]
⌘⌘
·
n
y[i] > r j

o

+
⇣
log
⇣
�
⇣
z

[i]
⌘⌘
� z

[i]
⌘
·
n
y[i]  r j

o i
. (6)

2When training a neural network using backpropagation, instead of mini-
mizing the K � 1 loss functions corresponding to the K � 1 conditional prob-
abilities on each conditional subset separately, we can minimize their sum, as
shown in the loss function we propose in Section 3.5, to optimize the binary
tasks simultaneously.

4

the binary subtasks. While CORAL provides this rank consis-
tency, CORAL’s limitation is a weight-sharing constraint in the
output layer. Consequently, all binary classification tasks use
the same weight parameters and only di↵er in their bias units,
which may limit the flexibility and expressiveness of an ordinal
regression neural network based on CORAL.

The proposed CORN model is a neural network for ordinal
regression that exhibits rank consistency without any weight-
sharing constraint in the output layer (Fig. 2). Instead, CORN
uses a new training procedure with conditional training subsets
that ensures rank consistency through applying the chain rule
of probability.

3.3. Rank-consistent Ordinal Regression based on Conditional
Probabilities

Given a training set D =
n
x

[i], y[i]
oN
i=1

, CORN applies a label
extension to the rank labels y[i] similar to CORAL, such that the
resulting binary label y[i]

k 2 {0, 1} indicates whether y[i] exceeds
rank rk. Similar to CORAL, CORN also uses K � 1 learning
tasks associated with ranks r1, r2, ..., rK in the output layer as
illustrated in Fig. 2.

However, in contrast to CORAL, CORN estimates a series of
conditional probabilities using conditional training subsets (de-
scribed in Section 3.4) such that the output of the k�th binary
task fk

⇣
x

[i]
⌘

represents the conditional probability1

fk
⇣
x

[i]
⌘
= P̂
⇣
y[i] > rk | y[i] > rk�1

⌘
, (2)

where the events are nested:
n
y[i] > rk

o
✓
n
y[i] > rk�1

o
.

The transformed, unconditional probabilities can then be
computed by applying the chain rule for probabilities to the
model outputs:

P̂
⇣
y[i] > rk

⌘
=

kY

j=1

f j
⇣
x

[i]
⌘
. (3)

Since 8 j, 0  f j
⇣
x

[i]
⌘
 1, we have

P̂
⇣
y[i] > r1

⌘
� P̂
⇣
y[i] > r2

⌘
� ... � P̂

⇣
y[i] > rK�1

⌘
, (4)

which guarantees rank consistency among the K � 1 binary
tasks.

3.4. Conditional Training Subsets

Our model aims to estimate f1
⇣
x

[i]
⌘

and the conditional prob-
abilities f2

⇣
x

[i]
⌘
, ..., fK�1

⇣
x

[i]
⌘
. Estimating f1

⇣
x

[i]
⌘

is a classic
binary classification task under the extended binary classifi-
cation framework with the binary labels y[i]

1 . To estimate the
conditional probabilities such as P̂

⇣
y[i] > r2 | y[i] > r1

⌘
, we fo-

cus only on the subset of the training data where y[i] > r1. As a
result, when we minimize the binary cross-entropy loss on these

1When k = 1, fk
⇣
x

[i]
⌘

represents the initial unconditional probability
f1
⇣
x

[i]
⌘
= P̂
⇣
y[i] > r1

⌘
.

conditional subsets, for each binary task, the estimated output
probability has a proper conditional probability interpretation2.

In order to model the conditional probabilities in Eq. 3, we
construct conditional training subsets for training, which are
used in the loss function (Section 3.5) that is minimized via
backpropagation. The conditional training subsets are obtained
from the original training set as follows:

S 1 : all
n⇣

x
[i], y[i]

⌘o
, for i 2 {1, ...,N},

S 2 :
n
(x[i], y[i]) | y[i] > r1

o
,

. . .

S K�1 :
n
(x[i], y[i]) | y[i] > rk�2

o
,

where N = |S 1|� |S 2|� ... � |S K�1|, and |S k | denotes the size of
S k. Note that the labels y[i] are subject to the binary label ex-
tension as described in Section 3.3. Each conditional training
subset S k is used for training the conditional probability predic-
tion P̂

⇣
y[i] > rk | y[i] > rk�1

⌘
for k � 2.

3.5. Loss Function

Let f j(x[i]) denote the predicted value of the j-th node in the
output layer of the network (Fig. 2), and let |S j| denote the size
of the j-th conditional training set. To train a CORN neural net-
work using backpropagation, we minimize the following loss
function:

L(X, y) =

� 1
PK�1

j=1 |S j|

K�1X

j=1

|S j |X

i=1

h
log
⇣

f j(x[i])
⌘
·
n
y[i] > r j

o

+ log
⇣
1 � f j

⇣
x

[i]
⌘⌘
·
n
y[i]  r j

o i
, (5)

We note that in f j(x[i]), x
[i] represents the i-th training example

in S j. To simplify the notation, we omit an additional index j
to distinguish between x

[i] in di↵erent conditional training sets.
To improve the numerical stability of the loss gradients dur-

ing training, we implement the following alternative formula-
tion of the loss, where Z are the net inputs of the last layer (aka
logits), as shown in Fig. 2, and log

⇣
�
⇣
z

[i]
⌘⌘
= log

⇣
f j
⇣
x

[i]
⌘⌘

:

L(Z, y) =

� 1
PK�1

j=1 |S j|

K�1X

j=1

|S j |X

i=1

h
log
⇣
�
⇣
z

[i]
⌘⌘
·
n
y[i] > r j

o

+
⇣
log
⇣
�
⇣
z

[i]
⌘⌘
� z

[i]
⌘
·
n
y[i]  r j

o i
. (6)

2When training a neural network using backpropagation, instead of mini-
mizing the K � 1 loss functions corresponding to the K � 1 conditional prob-
abilities on each conditional subset separately, we can minimize their sum, as
shown in the loss function we propose in Section 3.5, to optimize the binary
tasks simultaneously.

CORN Method 3/3

92

4

the binary subtasks. While CORAL provides this rank consis-
tency, CORAL’s limitation is a weight-sharing constraint in the
output layer. Consequently, all binary classification tasks use
the same weight parameters and only di↵er in their bias units,
which may limit the flexibility and expressiveness of an ordinal
regression neural network based on CORAL.

The proposed CORN model is a neural network for ordinal
regression that exhibits rank consistency without any weight-
sharing constraint in the output layer (Fig. 2). Instead, CORN
uses a new training procedure with conditional training subsets
that ensures rank consistency through applying the chain rule
of probability.

3.3. Rank-consistent Ordinal Regression based on Conditional
Probabilities

Given a training set D =
n
x

[i], y[i]
oN
i=1

, CORN applies a label
extension to the rank labels y[i] similar to CORAL, such that the
resulting binary label y[i]

k 2 {0, 1} indicates whether y[i] exceeds
rank rk. Similar to CORAL, CORN also uses K � 1 learning
tasks associated with ranks r1, r2, ..., rK in the output layer as
illustrated in Fig. 2.

However, in contrast to CORAL, CORN estimates a series of
conditional probabilities using conditional training subsets (de-
scribed in Section 3.4) such that the output of the k�th binary
task fk

⇣
x

[i]
⌘

represents the conditional probability1

fk
⇣
x

[i]
⌘
= P̂
⇣
y[i] > rk | y[i] > rk�1

⌘
, (2)

where the events are nested:
n
y[i] > rk

o
✓
n
y[i] > rk�1

o
.

The transformed, unconditional probabilities can then be
computed by applying the chain rule for probabilities to the
model outputs:

P̂
⇣
y[i] > rk

⌘
=

kY

j=1

f j
⇣
x

[i]
⌘
. (3)

Since 8 j, 0  f j
⇣
x

[i]
⌘
 1, we have

P̂
⇣
y[i] > r1

⌘
� P̂
⇣
y[i] > r2

⌘
� ... � P̂

⇣
y[i] > rK�1

⌘
, (4)

which guarantees rank consistency among the K � 1 binary
tasks.

3.4. Conditional Training Subsets

Our model aims to estimate f1
⇣
x

[i]
⌘

and the conditional prob-
abilities f2

⇣
x

[i]
⌘
, ..., fK�1

⇣
x

[i]
⌘
. Estimating f1

⇣
x

[i]
⌘

is a classic
binary classification task under the extended binary classifi-
cation framework with the binary labels y[i]

1 . To estimate the
conditional probabilities such as P̂

⇣
y[i] > r2 | y[i] > r1

⌘
, we fo-

cus only on the subset of the training data where y[i] > r1. As a
result, when we minimize the binary cross-entropy loss on these

1When k = 1, fk
⇣
x

[i]
⌘

represents the initial unconditional probability
f1
⇣
x

[i]
⌘
= P̂
⇣
y[i] > r1

⌘
.

conditional subsets, for each binary task, the estimated output
probability has a proper conditional probability interpretation2.

In order to model the conditional probabilities in Eq. 3, we
construct conditional training subsets for training, which are
used in the loss function (Section 3.5) that is minimized via
backpropagation. The conditional training subsets are obtained
from the original training set as follows:

S 1 : all
n⇣

x
[i], y[i]

⌘o
, for i 2 {1, ...,N},

S 2 :
n
(x[i], y[i]) | y[i] > r1

o
,

. . .

S K�1 :
n
(x[i], y[i]) | y[i] > rk�2

o
,

where N = |S 1|� |S 2|� ... � |S K�1|, and |S k | denotes the size of
S k. Note that the labels y[i] are subject to the binary label ex-
tension as described in Section 3.3. Each conditional training
subset S k is used for training the conditional probability predic-
tion P̂

⇣
y[i] > rk | y[i] > rk�1

⌘
for k � 2.

3.5. Loss Function

Let f j(x[i]) denote the predicted value of the j-th node in the
output layer of the network (Fig. 2), and let |S j| denote the size
of the j-th conditional training set. To train a CORN neural net-
work using backpropagation, we minimize the following loss
function:

L(X, y) =

� 1
PK�1

j=1 |S j|

K�1X

j=1

|S j |X

i=1

h
log
⇣

f j(x[i])
⌘
·
n
y[i] > r j

o

+ log
⇣
1 � f j

⇣
x

[i]
⌘⌘
·
n
y[i]  r j

o i
, (5)

We note that in f j(x[i]), x
[i] represents the i-th training example

in S j. To simplify the notation, we omit an additional index j
to distinguish between x

[i] in di↵erent conditional training sets.
To improve the numerical stability of the loss gradients dur-

ing training, we implement the following alternative formula-
tion of the loss, where Z are the net inputs of the last layer (aka
logits), as shown in Fig. 2, and log

⇣
�
⇣
z

[i]
⌘⌘
= log

⇣
f j
⇣
x

[i]
⌘⌘

:

L(Z, y) =

� 1
PK�1

j=1 |S j|

K�1X

j=1

|S j |X

i=1

h
log
⇣
�
⇣
z

[i]
⌘⌘
·
n
y[i] > r j

o

+
⇣
log
⇣
�
⇣
z

[i]
⌘⌘
� z

[i]
⌘
·
n
y[i]  r j

o i
. (6)

2When training a neural network using backpropagation, instead of mini-
mizing the K � 1 loss functions corresponding to the K � 1 conditional prob-
abilities on each conditional subset separately, we can minimize their sum, as
shown in the loss function we propose in Section 3.5, to optimize the binary
tasks simultaneously.

CORN Architecture

93

3

! /0123# > 1
!(/0123# > 2)
! /0123# > 3
! /0123# > 4

Rank consistency (ideal)

50% probability
threshold

Input
(image example from
aesthetics dataset)

Neural network
without rank consistency

Neural network
with rank consistency

! /0123# > 1
!(/0123# > 2)
! /0123# > 3
! /0123# > 4

Rank inconsistency (not ideal)

= 1 + '
!"#

$
() *+,-./ > 1+.2! > 0.5

= 4

= 1 + '
!"#

$
() *+,-./ > 1+.2! > 0.5

= 5

Predicted ordinal label

Predicted ordinal label

Fig. 1. Illustration of the di↵erence between rank-consistent and rank-inconsistent methods.

1 training example
for paper

... ...

!!

!"

!#

"!

""

"$%!

Hidden
layers

!(# !)
!

$

&!,!

&!,#

&!,*

'! = [&!,! &!,# … &!,*]

where %"! = + ! ("& + *"

where %#! = + ! (#& + *#

where %+%"! = + ! (+%"& + *+%"

+! ,[&] = - .!&

+# ,[&] = - .#&

++)! ,[&] = - .+)!&

Logistic sigmoid function

Outputs
where) ,"#$! = -. /[!] > 1"#$ | /[!]> 1"#'

2 = [3! 3# … 3*]
1 = [.! .# … .+)!]

One example
as input

Activations of
penultimate layer

Net inputs of
output layer

Weight parameters of the last layer (bias units 3$…3(#$ not shown)

Predicted rank 4 & = 1 + 7
(,!

+)!
8 9: ;[&] > =(> 0.5

where 9: ; & > =(= 9: ; & > =! A 9: ; & > =# | ; & > =! ⋯ 9: ; & > =(| ; & > =()!

Fig. 2. Outline of the neural network architecture used for CORN.

CORN Performance 1/2

94

7

Table 1. Prediction errors on the test sets. Best results are highlighted in bold.

Method Seed MORPH-2 (Balanced) AFAD (Balanced) AES FIREMAN
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CE-NN

0 3.81 5.19 3.31 4.27 0.43 0.68 0.80 1.14
1 3.60 4.8 3.28 4.19 0.43 0.69 0.80 1.14
2 3.61 4.84 3.32 4.22 0.45 0.71 0.79 1.13
3 3.85 5.21 3.24 4.15 0.43 0.70 0.80 1.16
4 3.80 5.14 3.24 4.13 0.42 0.68 0.80 1.15

AVG±SD 3.73 ± 0.12 5.04 ± 0.20 3.28 ± 0.04 4.19 ± 0.06 0.43 ± 0.01 0.69 ± 0.01 0.80 ± 0.01 1.14 ± 0.01

OR-NN
[11]

0 3.21 4.25 2.81 3.45 0.44 0.70 0.75 1.07
1 3.16 4.25 2.87 3.54 0.43 0.69 0.76 1.08
2 3.16 4.31 2.82 3.46 0.43 0.69 0.77 1.10
3 2.98 4.05 2.89 3.49 0.44 0.70 0.76 1.08
4 3.13 4.27 2.86 3.45 0.43 0.69 0.74 1.07

AVG±SD 3.13 ± 0.09 4.23 ± 0.10 2.85 ± 0.03 3.48 ± 0.04 0.43 ± 0.01 0.69 ± 0.01 0.76 ± 0.01 1.08 ± 0.01

CORAL
[1]

0 2.94 3.98 2.95 3.60 0.47 0.72 0.82 1.14
1 2.97 4.03 2.99 3.69 0.47 0.72 0.83 1.16
2 3.01 3.98 2.98 3.70 0.48 0.73 0.81 1.13
3 2.98 4.01 3.00 3.78 0.44 0.70 0.82 1.16
4 3.03 4.06 3.04 3.75 0.46 0.72 0.82 1.15

AVG±SD 2.99 ± 0.04 4.01 ± 0.03 2.99 ± 0.03 3.70 ± 0.07 0.46 ± 0.02 0.72 ± 0.01 0.82 ± 0.01 1.15 ± 0.01

CORN
(ours)

0 2.98 4 2.80 3.45 0.41 0.67 0.75 1.07
1 2.99 4.01 2.81 3.44 0.44 0.69 0.76 1.08
2 2.97 3.97 2.84 3.48 0.42 0.68 0.77 1.10
3 3.00 4.06 2.80 3.48 0.43 0.69 0.76 1.08
4 2.95 3.92 2.79 3.45 0.43 0.69 0.74 1.07

AVG±SD 2.98 ± 0.02 3.99 ± 0.05 2.81 ± 0.02 3.46 ± 0.02 0.43 ± 0.01 0.68 ± 0.01 0.76 ± 0.01 1.08 ± 0.01

[4] R. Diaz and A. Marathe. Soft labels for ordinal regression. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 4738–4747, 2019.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 770–778, 2016.

[6] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
Y. Bengio and Y. LeCun, editors, International Conference on Learning
Representations, pages 1–8, 2015.

[7] L. Li and H.-T. Lin. Ordinal regression by extended binary classification.
In Advances in Neural Information Processing Systems, pages 865–872,
2007.

[8] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In
International Conference on Learning Representations (Poster), 2019.

[9] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al. Rectifier nonlinearities im-
prove neural network acoustic models. In Proc. icml, volume 30, page 3.
Citeseer, 2013.

[10] P. McCullagh. Regression models for ordinal data. Journal of the Royal
Statistical Society. Series B (Methodological), pages 109–142, 1980.

[11] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua. Ordinal regression with
multiple output CNN for age estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4920–
4928, 2016.

[12] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035, 2019.

[13] F. Petersen, C. Borgelt, H. Kuehne, and O. Deussen. Di↵erentiable sorting
networks for scalable sorting and ranking supervision. In International
Conference on Machine Learning, 2021.

[14] S. Rajaram, A. Garg, X. S. Zhou, and T. S. Huang. Classification approach
towards ranking and sorting problems. In Proceedings of the European
Conference on Machine Learning, pages 301–312. Springer, 2003.

[15] S. Raschka. MLxtend: Providing machine learning and data science util-
ities and extensions to Python’s scientific computing stack. The Journal
of Open Source Software, 3(24):1–2, 2018.

[16] K. Ricanek and T. Tesafaye. Morph: A longitudinal image database of
normal adult age-progression. In Proceedings of the IEEE Conference on
Automatic Face and Gesture Recognition, pages 341–345, 2006.

[17] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic.
300 faces in-the-wild challenge: database and results. Image and Vision
Computing, 47:3–18, 2016.

[18] R. Schifanella, M. Redi, and L. M. Aiello. An image is worth more than
a thousand favorites: Surfacing the hidden beauty of flickr pictures. In
International AAAI Conference on Web and Social Media, 2015.

[19] A. Shashua, A. Levin, et al. Ranking with large margin principle: Two
approaches. Advances in Neural Information Processing Systems, pages
961–968, 2003.

[20] J. L. Suárez, S. Garcı́a, and F. Herrera. Ordinal regression with ex-
plainable distance metric learning based on ordered sequences. Machine
Learning, pages 1–34, 2021.

[21] H. Zhu, H. Shan, Y. Zhang, L. Che, X. Xu, J. Zhang, J. Shi, and F.-Y.
Wang. Convolutional ordinal regression forest for image ordinal esti-
mation. IEEE Transactions on Neural Networks and Learning Systems,
2021.

CORN Performance 2/2

95

11

Table S1. Prediction errors on the test sets. Best results are highlighted in bold.

Method Seed TripAdvisor (Balanced) Coursera (Balanced)
MAE RMSE MAE RMSE

CE-RNN

0 1.13 1.56 1.01 1.48
1 1.04 1.53 0.97 1.05
2 1.05 1.54 1.12 1.65
3 1.23 1.81 1.18 1.76
4 1.03 1.52 0.84 1.26

AVG±SD 1.10 ± 0.09 1.59 ± 0.12 1.02 ± 0.13 1.53 ± 0.19

OR-RNN
[11]

0 1.06 1.53 0.98 1.34
1 1.09 1.50 0.93 1.24
2 1.11 1.53 1.12 1.47
3 1.23 1.52 1.11 1.53
4 1.07 1.40 0.85 1.16

AVG±SD 1.11 ± 0.07 1.50 ± 0.06 1.00 ± 0.12 1.35 ± 0.15

CORAL
[1]

0 1.15 1.58 0.99 1.29
1 1.14 1.49 1.03 1.39
2 1.16 1.46 1.14 1.40
3 1.19 1.41 1.20 1.40
4 1.13 1.47 0.82 1.11

AVG±SD 1.15 ± 0.02 1.48 ± 0.06 1.04 ± 0.15 1.33 ± 0.13

CORN
(ours)

0 1.09 1.55 0.95 1.37
1 1.09 1.53 0.90 1.32
2 1.01 1.45 1.07 1.49
3 1.12 1.51 1.05 1.47
4 1.03 1.46 0.78 1.14

AVG±SD 1.07 ± 0.05 1.50 ± 0.04 0.95 ± 0.12 1.36 ± 0.14

9

!! "[#]

3 training examples
as input

Assume 3 training examples ! ! , ! " , and ! #

with the following 3 rank labels:

Train task 1

binarize
" $ > $!?

% =
" ! = 1
" " = 3
" # = 4

% =
" ! = 1
" " = 3
" # = 4

%! =
"!! = 0
"!" = 1
"!# = 1

! !

! "

! #

Train task 2

binarize
" $ > $"?

% =
" ! = 1
" " = 3
" # = 4

Train task 3

binarize
" $ > $#?

% =
" ! = 1
" " = 3
" # = 4

%# =
"#" = 0
"## = 1

Train task 4

binarize
" $ > $%?

% =
" ! = 1
" " = 3
" # = 4

%% = "%# = 0

%" =
""" = 1
""# = 1

+! = log 1 − 0! ![!]

+ log 0! ! "

+ log 0! ! #

+" = log 0" ! "

+ log 0" ! #

+# = log 1 − 0# ! "

+ log 0# ! # +% = log 1 − 0% ! #

Neural
network

Binary tasks Loss of first task

!% "[#]

!& "[#]! "

! #
Neural
network

! "

! #
Neural
network

!' "[#]

! # Neural
network

!(#, %) = !
∑(|$)|

∑% !%

= 1
3 + 2 + 2 + 1!! + !& + !' + !(

Overall loss:

Fig. S2. Visual explanation of how the CORN loss is computed using the conditional training subsets.

CORN Loss

96

