

Introduction to Generative Adversarial Networks

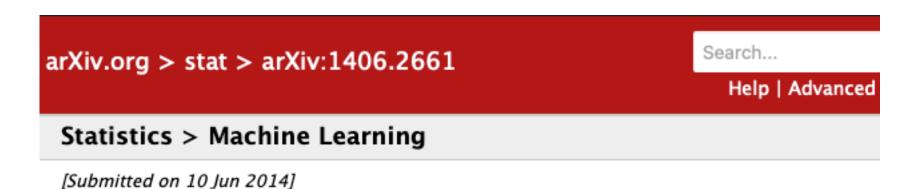
Sebastian Raschka

University of Wisconsin-Madison

Organizers

It all began in 2014

Generative Adversarial Networks = GAN/GANs

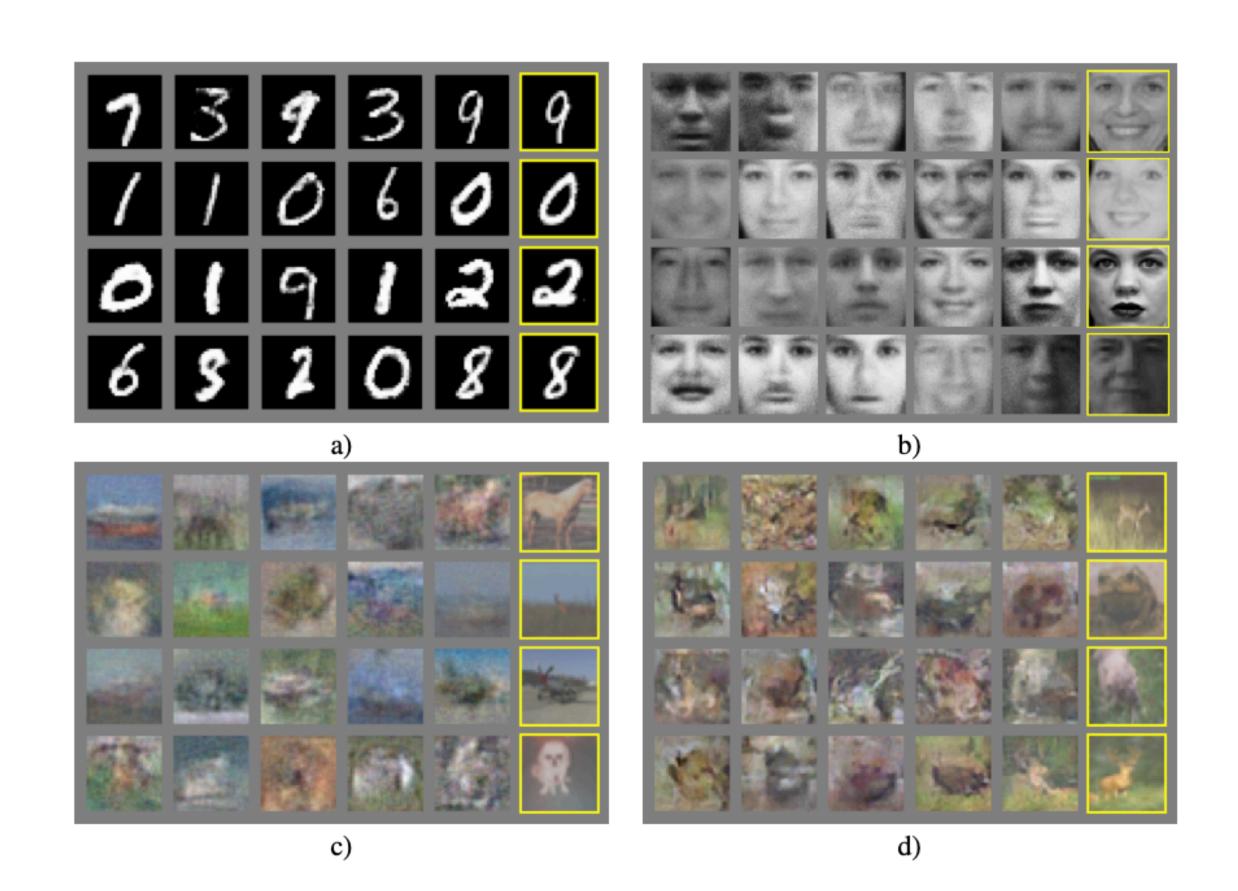


Generative Adversarial Networks

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio

We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

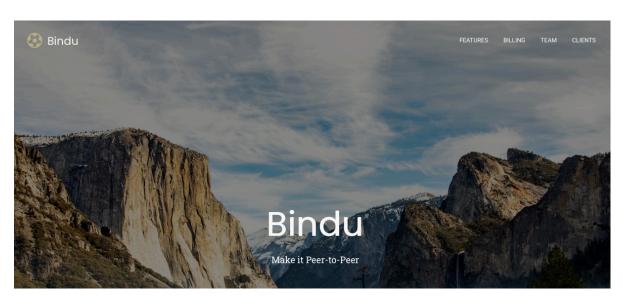
https://arxiv.org/abs/1406.2661



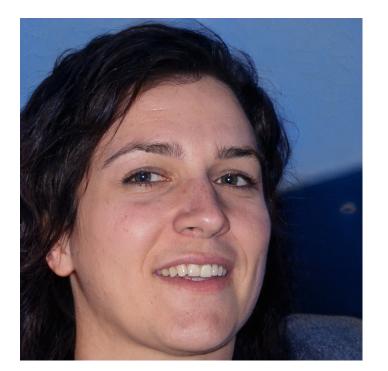
Face generation has come a long way

Image source: https://blog.eduonix.com/artificial-intelligence/grand-finale-applications-gans/

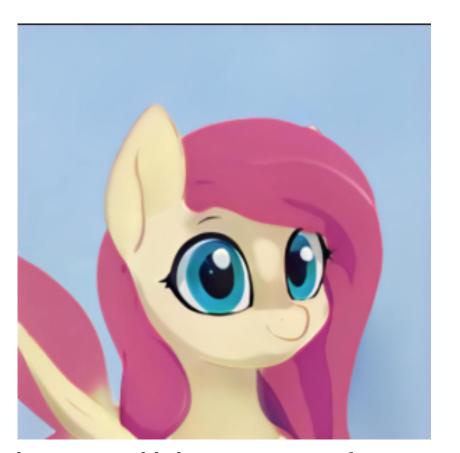
https://thiscatdoesnotexist.com



https://thisstartupdoesnotexist.com



https://thispersondoesnotexist.com



https://thisponydoesnotexist.net

Today's Topics

- 1. The Main Idea Behind GANs
- 2. The GAN Objective
- 3. Modifying the GAN Loss Function for Practical Use
- 4. A Simple GAN Generating Handwritten Digits in PyTorch
- 5. Tips and Tricks to Make GANs Work
- 6. A DCGAN for Generating Face Images in PyTorch
- 7. GAN Resources

Letting two neural networks compete with each other

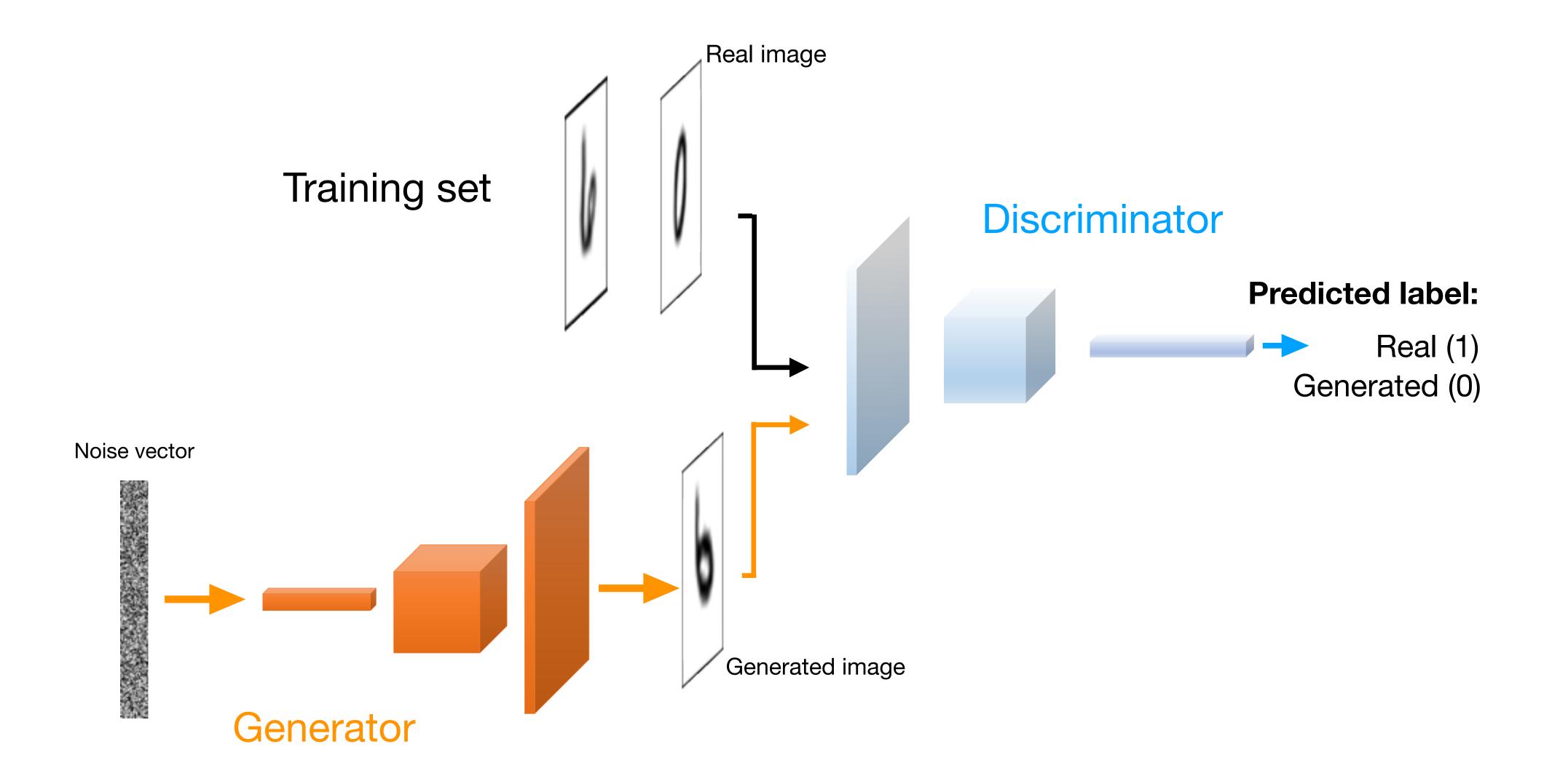
1. The Main Idea Behind GANs

- 2. The GAN Objective
- 3. Modifying the GAN Loss Function for Practical Use
- 4. A Simple GAN Generating Handwritten Digits in PyTorch
- 5. Tips and Tricks to Make GANs Work
- 6. A DCGAN for Generating Face Images in PyTorch
- 7. GAN Resources

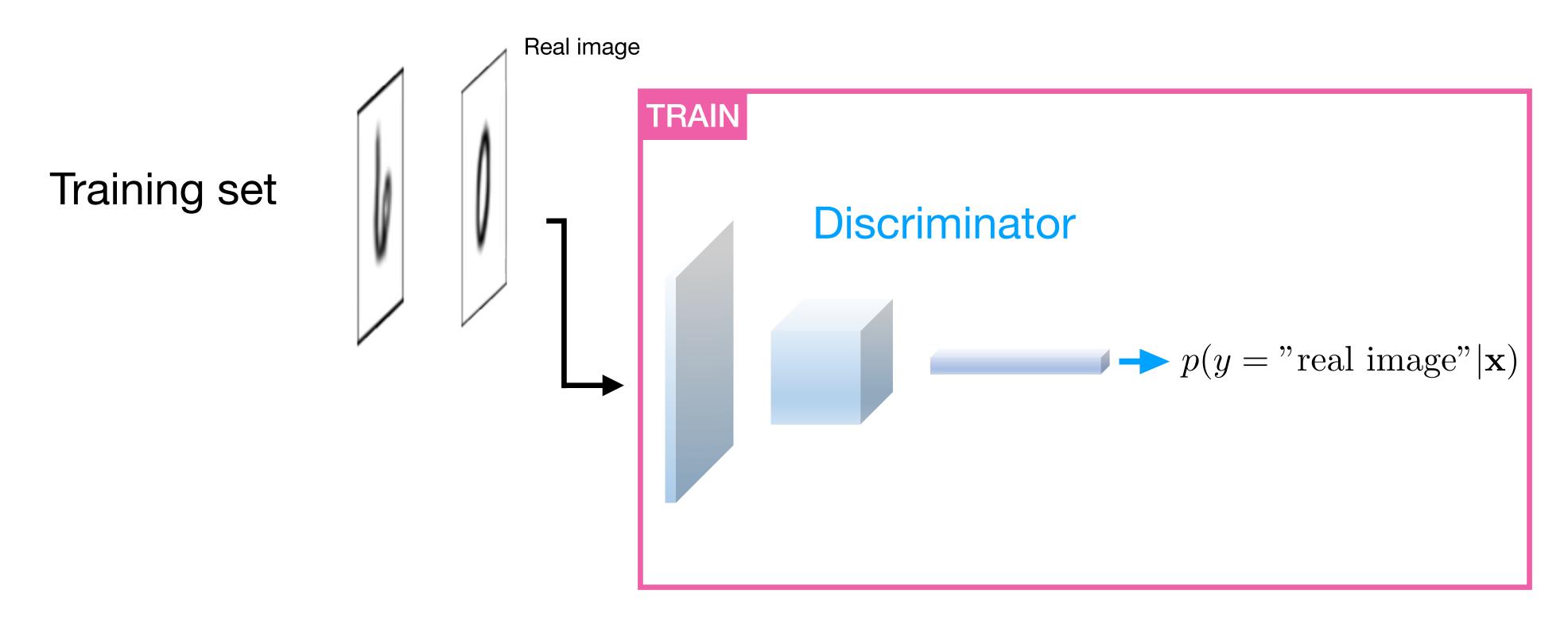
Generative Adversarial Networks (GAN)

- The original purpose is to generate new data
- Classically for generating new images, but applicable to wide range of domains
- Learns the training set distribution and can generate new images that have never been seen before

Deep Convolutional GAN (DCGAN or just GAN)

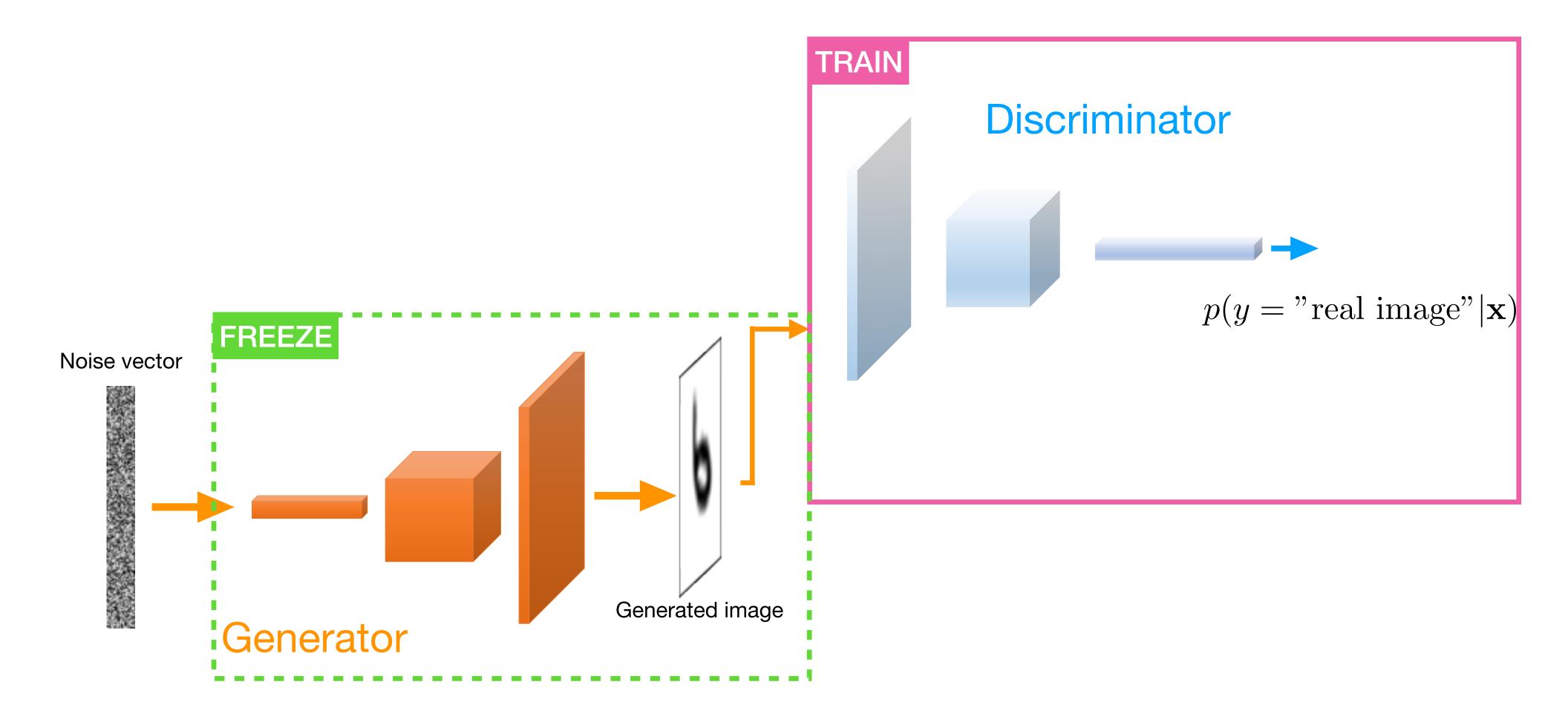


Step 1.1: Train Discriminator



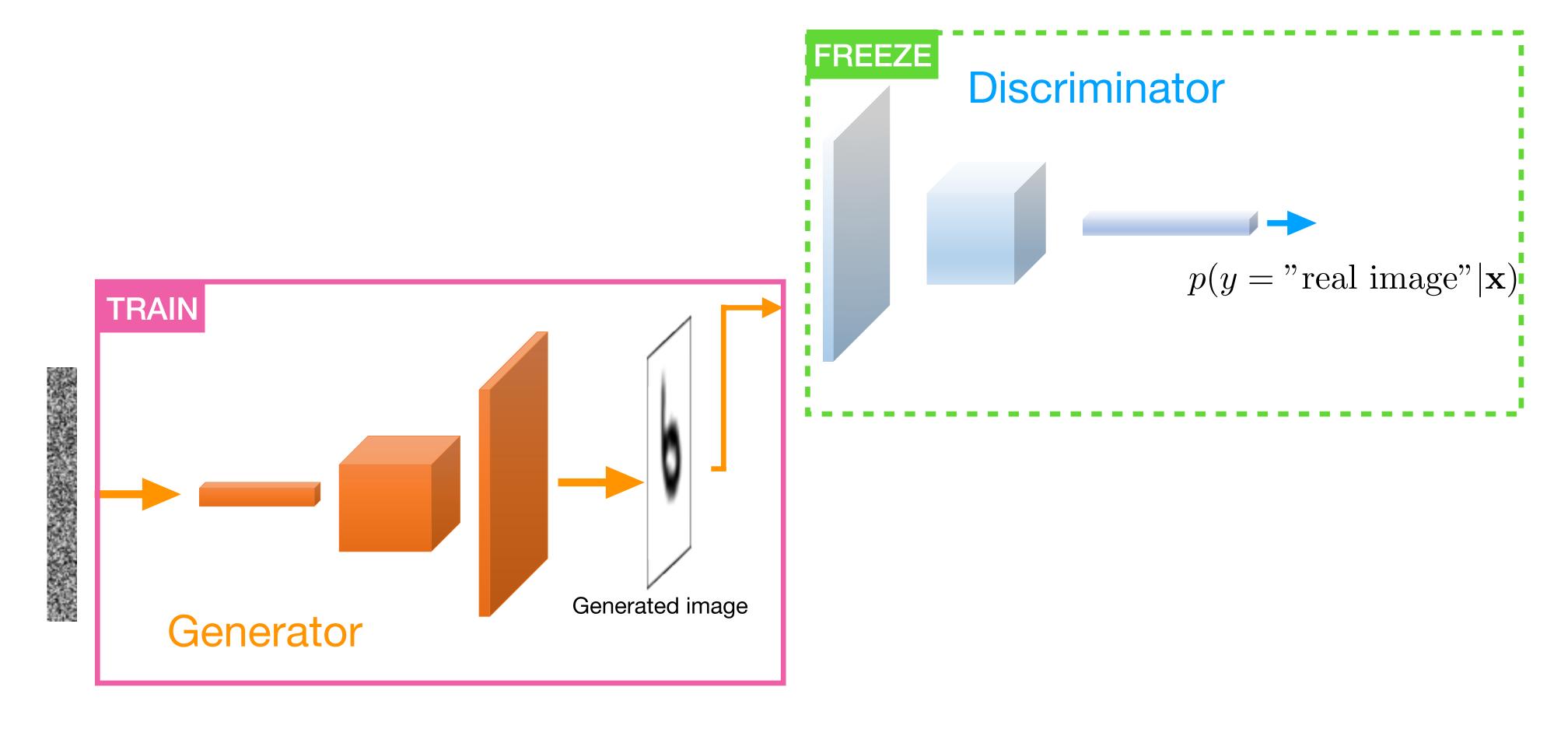
Train to predict that real image is real

Step 1.2: Train Discriminator



Train to predict that fake image is fake

Step 2: Train Generator



Train to predict that fake image is <u>real</u>

Adversarial Game

<u>Discriminator</u>: learns to become better at distinguishing real from generated images

Generator: learns to generate better images to fool the discriminator

How do the loss functions look like?

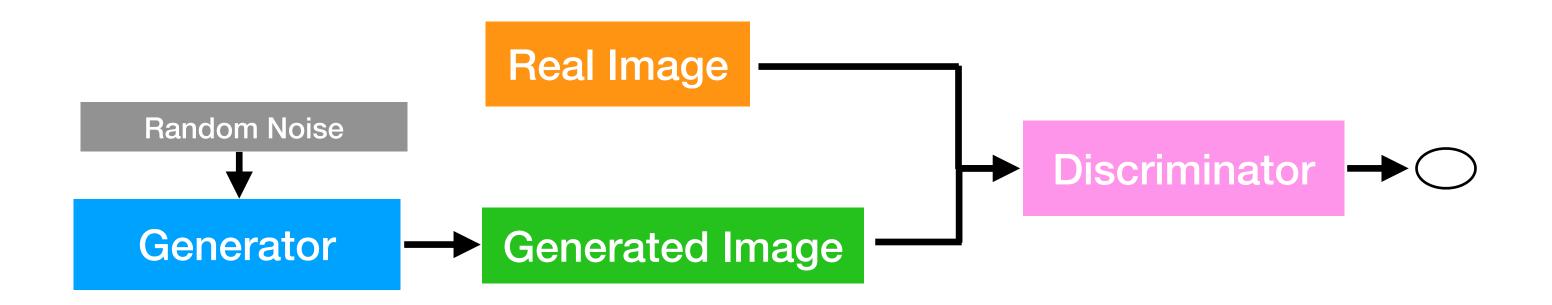
1. The Main Idea Behind GANs

2. The GAN Objective

- 3. Modifying the GAN Loss Function for Practical Use
- 4. A Simple GAN Generating Handwritten Digits in PyTorch
- 5. Tips and Tricks to Make GANs Work
- 6. A DCGAN for Generating Face Images in PyTorch
- 7. GAN Resources

GAN Objective

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left(\boldsymbol{x} \right) \left[\log D(\boldsymbol{x}) \right] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \left[\log (1 - D(G(\boldsymbol{z}))) \right]$$



Turning the minmax optimization setting into a minimization problem for SGD

- 1. The Main Idea Behind GANs
- 2. The GAN Objective

3. Modifying the GAN Loss Function for Practical Use

- 4. A Simple GAN Generating Handwritten Digits in PyTorch
- 5. Tips and Tricks to Make GANs Work
- 6. A DCGAN for Generating Face Images in PyTorch
- 7. GAN Resources

(1) Minimize discriminator loss

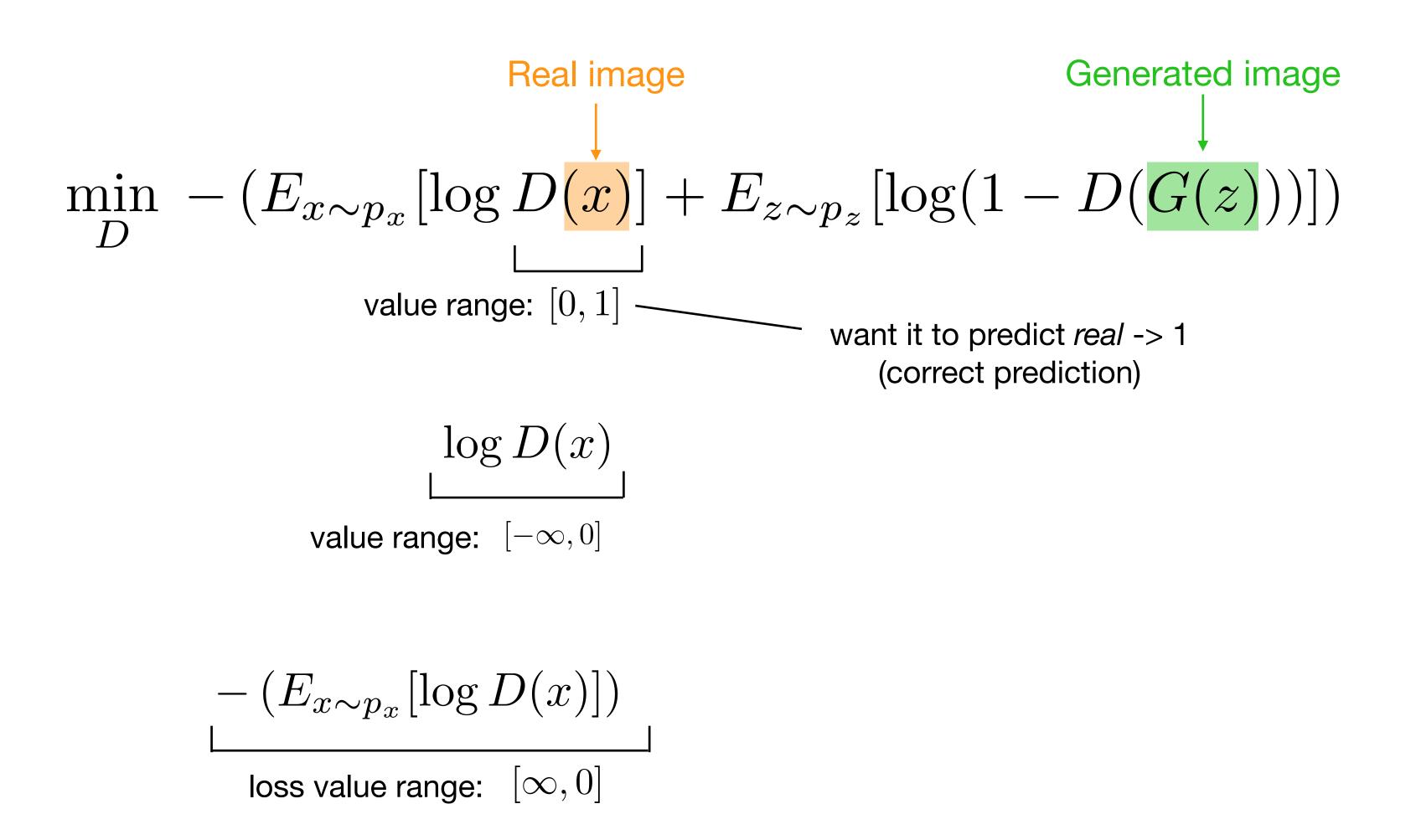
$$\min_{D} -(E_{x \sim p_x}[\log D(x)] + E_{z \sim p_z}[\log (1 - D(G(z)))])$$

using "original" labels

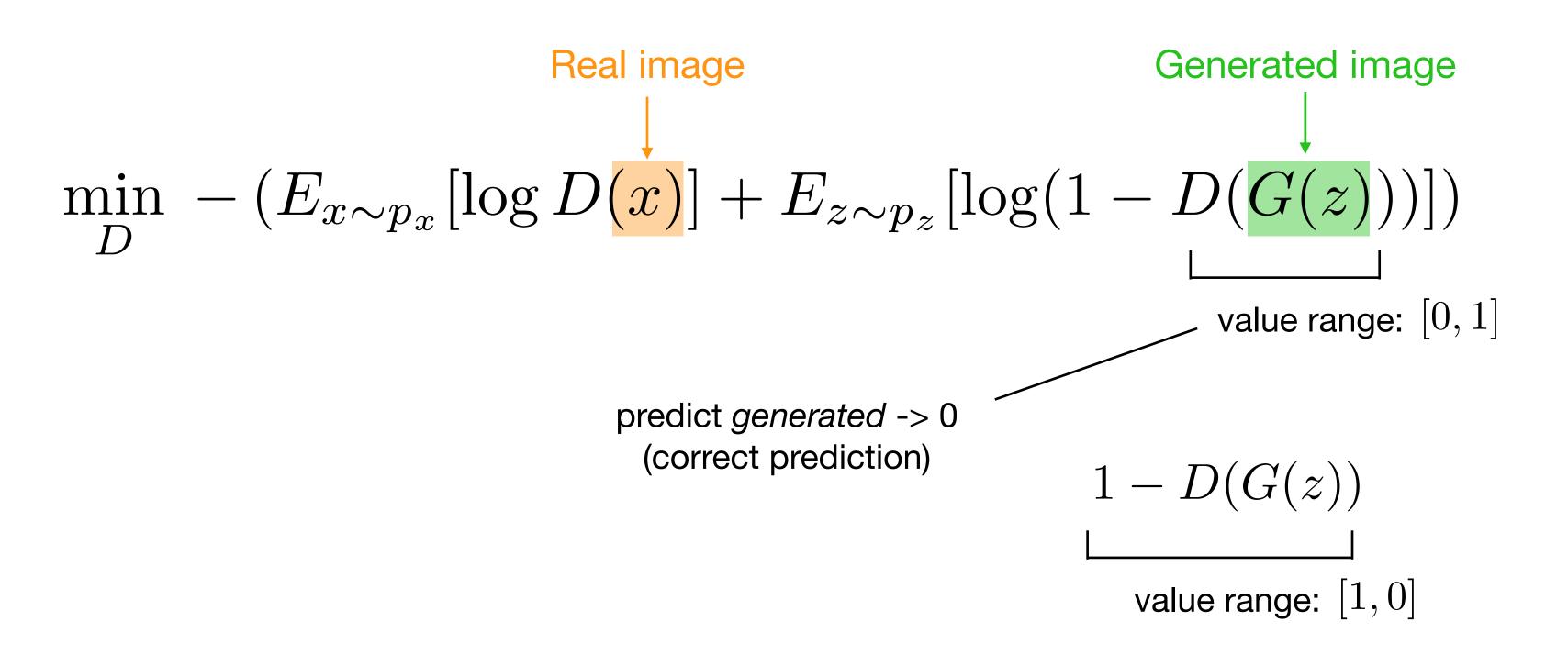
Real images: class label 1

Generated images: class label 0

(1) Minimize discriminator loss



(1) Minimize discriminator loss



$$-\left(E_{z\sim p_{z}}[\log(1-D(G(z)))]\right)$$

loss value range: $[0,\infty]$

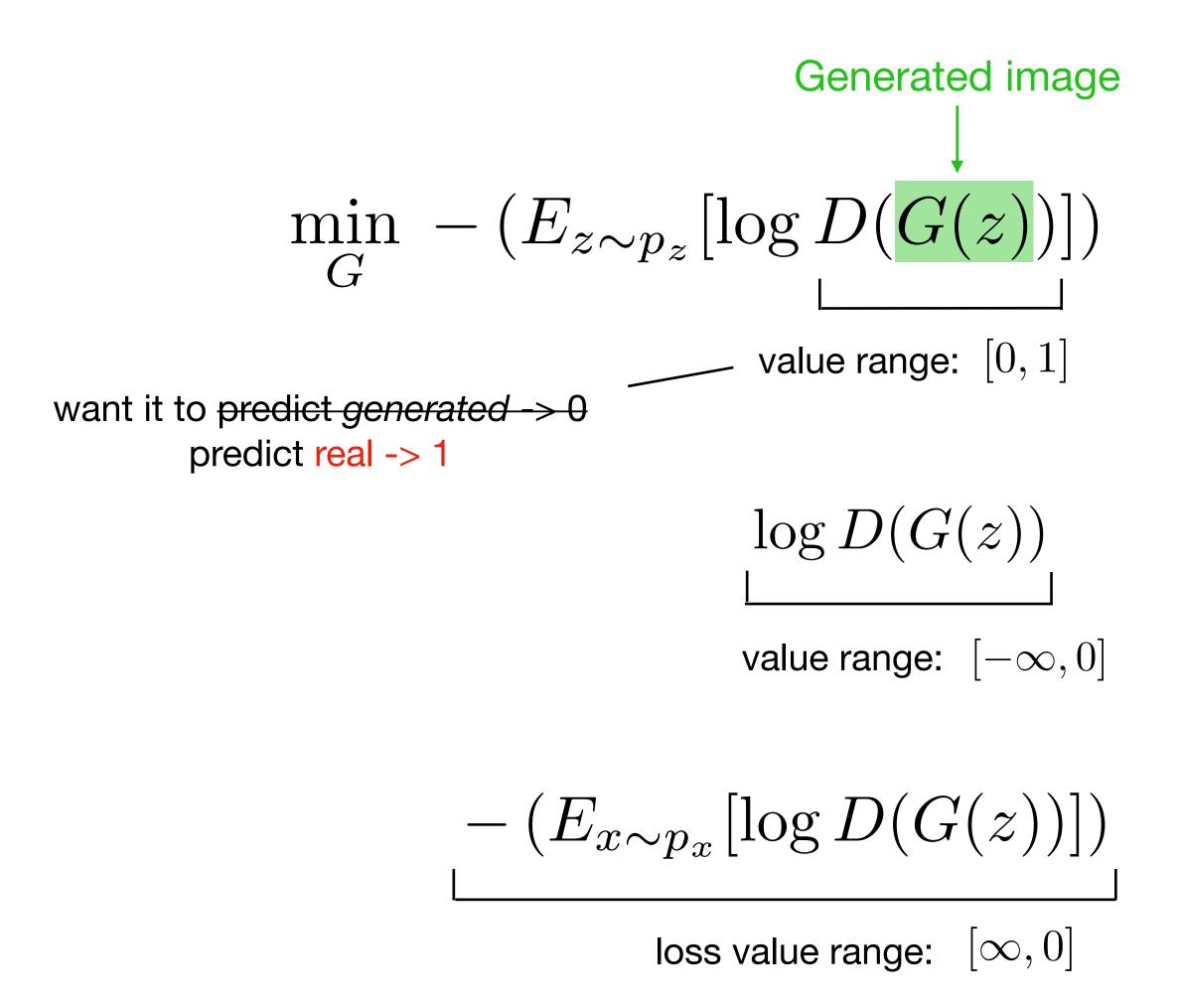
(2) Minimize generator loss (to fool discriminator)

Generated image
$$\min_{G} - (E_{z \sim p_z}[\log D(G(z))])$$

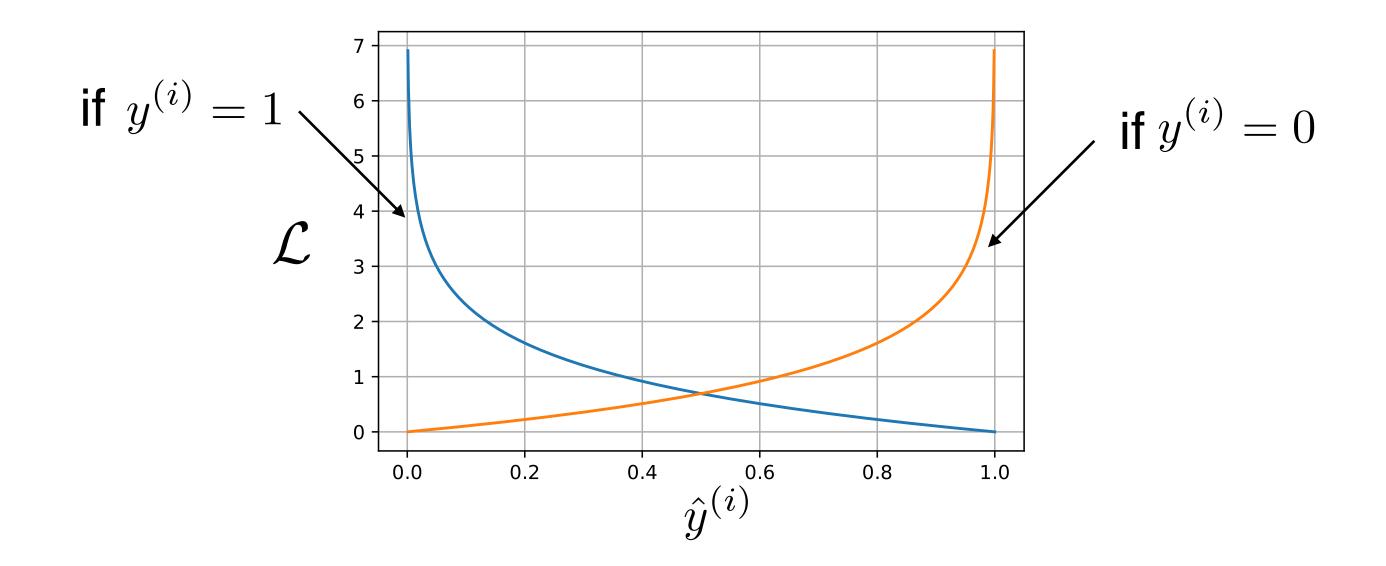
Want to fool discriminator to make a wrong prediction

Generated images: predict class label 1

(2) Minimize generator loss (to fool discriminator)



Negative Log-Likelihood / Binary Cross Entropy Loss



$$\mathcal{L}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \left[-\left(y^{(i)} \log \left(\hat{y}^{(i)} \right) + \left(1 - y^{(i)} \right) \log \left(1 - \hat{y}^{(i)} \right) \right) \right]$$

Negative Log-Likelihood / Binary Cross Entropy Loss

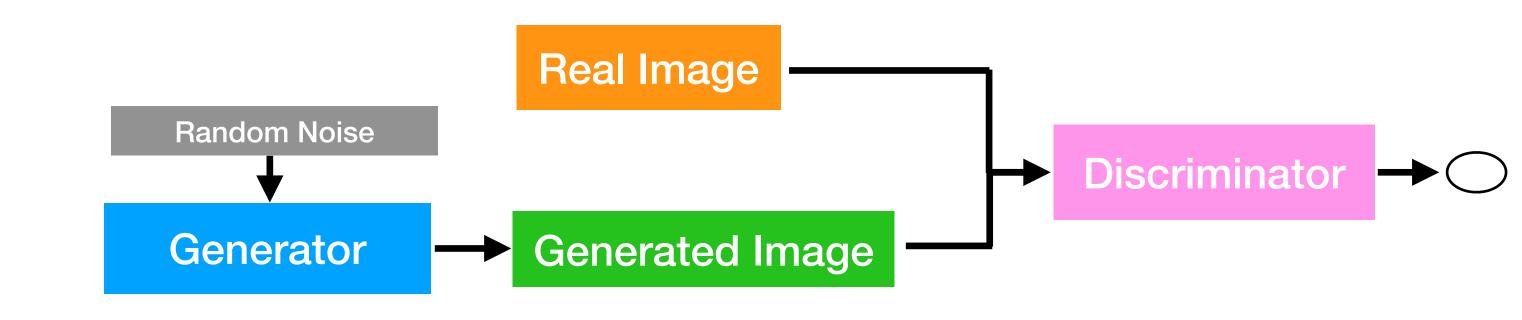
$$\mathcal{L}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \left[-\left(y^{(i)} \log \left(\hat{y}^{(i)} \right) + \left(1 - y^{(i)} \right) \log \left(1 - \hat{y}^{(i)} \right) \right) \right]$$

Discriminator: real images $y = [1 \ 1 \ ... \ 1]$

 $\text{want} \quad \hat{y} = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}$

generated images $y = [0 \ 0 \ \dots \ 0]$

want $\hat{y} = [0 \ 0 \ ... \ 0]$



Negative Log-Likelihood / **Binary Cross Entropy Loss**

$$\mathcal{L}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \left[-\left(y^{(i)} \log \left(\hat{y}^{(i)} \right) + \left(1 - y^{(i)} \right) \log \left(1 - \hat{y}^{(i)} \right) \right) \right]$$

Generator:

generated images $y = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}$

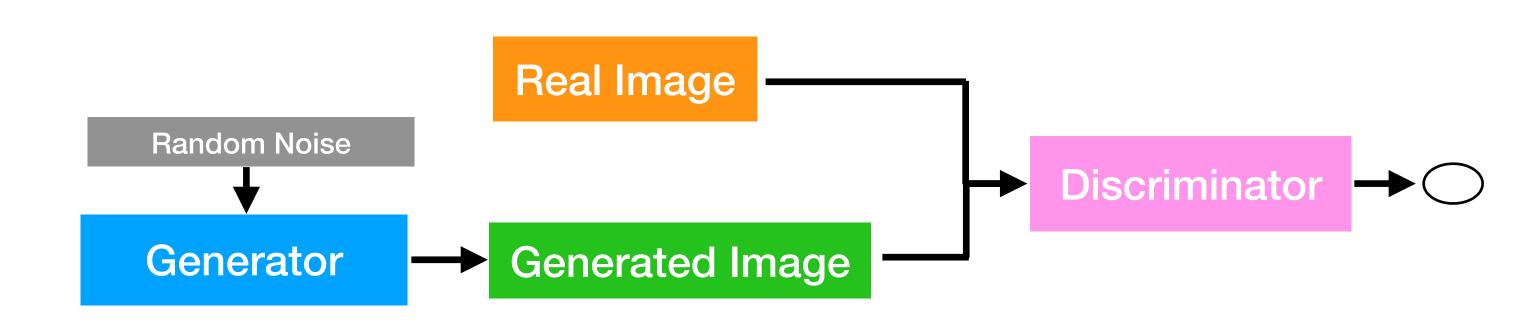
$$y = [0 \ 0 \ \dots \ 0]$$

label flip

$$y = [1 \ 1 \ ... \ 1]$$

want to fool the discriminator $\hat{y} = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}$

$$\hat{y} = [1 \ 1 \ \dots \ 1]$$



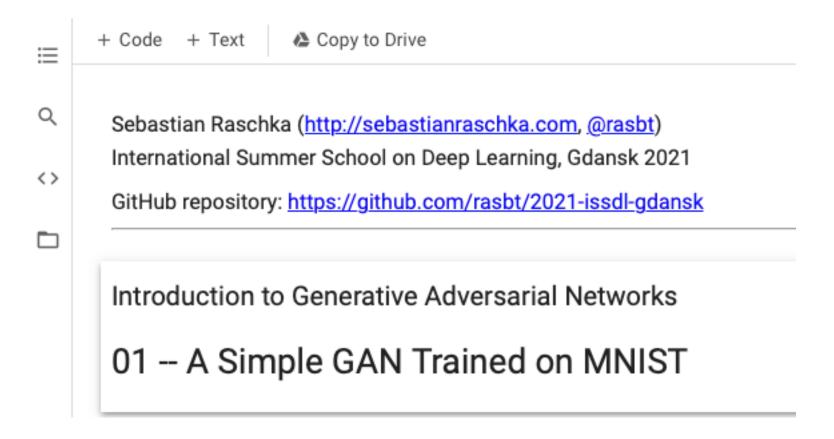
Implementing our first GAN

- 1. The Main Idea Behind GANs
- 2. The GAN Objective
- 3. Modifying the GAN Loss Function for Practical Use
- 4. A Simple GAN Generating Handwritten Digits in PyTorch
- 5. Tips and Tricks to Make GANs Work
- 6. A DCGAN for Generating Face Images in PyTorch
- 7. GAN Resources

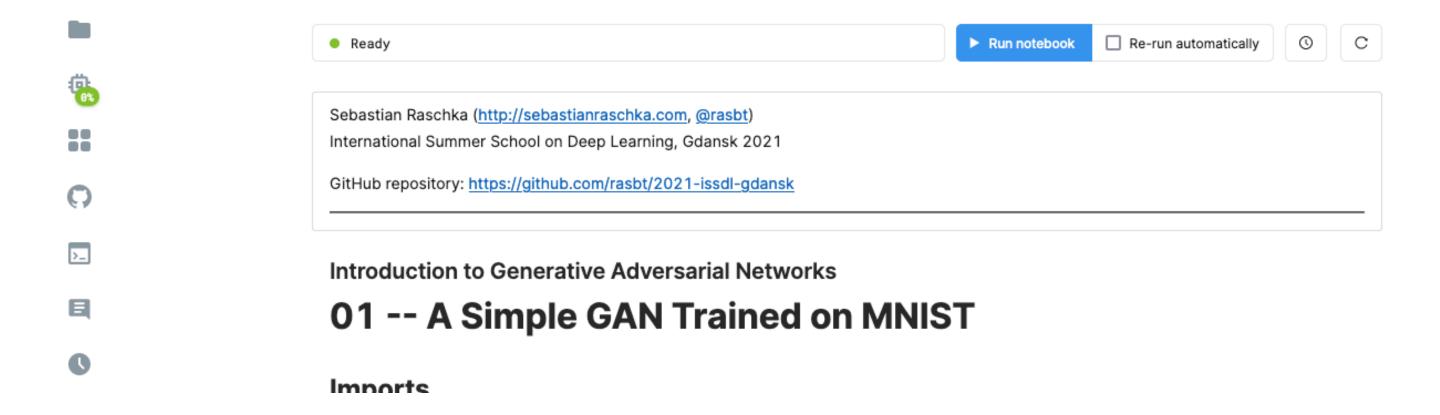
```
self.generator = nn.Sequential(
  nn.Linear(latent_dim, 128),
  nn.LeakyReLU(inplace=True),
  nn.Dropout(p=0.5),
  nn.Linear(128, image_height*image_width*color_channels),
  ## Exercise 1: ##
  ####################
  ## Which activation function,
     tanh or logistic sigmoid?
  ## Uncomment the correct one below.
  # a)
  # nn.Sigmoid
  # b)
  # nn.Tanh
```

```
model.train()
for batch_idx, (features, _) in enumerate(train_loader):
   batch_size = features.size(0)
   # real images
   real_images = features.to(device)
   ## Exercise 2: ##
   ###################
   ## Which labels for the real images?
   ## Uncomment the correct code below
   # a)
   # real_labels = torch.zeros(batch_size, device=device)
   # b)
   # real_labels = torch.ones(batch_size, device=device)
```

```
# generated (fake) images
noise = torch.randn(batch_size, latent_dim, 1, 1, device=device)
fake_images = model.generator_forward(noise)
## Exercise 3: ##
###################
## Which labels for the generated images?
## Uncomment the correct code below
# a)
# fake_labels = torch.zeros(batch_size, device=device)
#
# b)
# fake_labels = torch.ones(batch_size, device=device)
flipped_fake_labels = real_labels
```



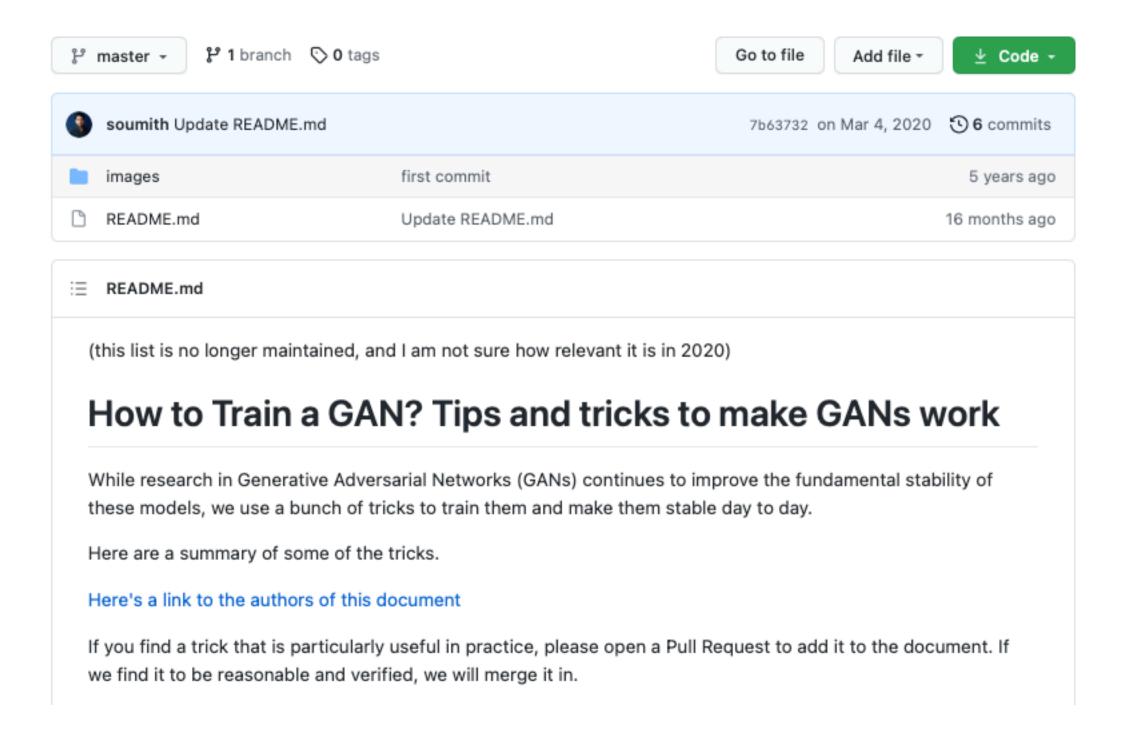
https://colab.research.google.com/github/rasbt/2021-issdl-gdansk/blob/main/01_gan-mnist-exercise.ipynb



https://deepnote.com/project/2021-issdl-gdansk-qUQLtJxgQeKj0NrLtxDeow/%2F01_gan-mnist-exercise.ipynb

Looking at some of the best practices for GAN training

- 1. The Main Idea Behind GANs
- 2. The GAN Objective
- 3. Modifying the GAN Loss Function for Practical Use
- 4. A Simple GAN Generating Handwritten Digits in PyTorch
- 5. Tips and Tricks to Make GANs Work
- 6. A DCGAN for Generating Face Images in PyTorch
- 7. GAN Resources



https://github.com/soumith/ganhacks

1. Normalize the inputs

- normalize the images between -1 and 1
- Tanh as the last layer of the generator output

1. Normalize the inputs

normalize the images between -1 and 1

Tanh as the last layer of the generator output

```
self.generator = nn.Sequential(
    nn.Linear(latent_dim, 128),
    nn.LeakyReLU(inplace=True),
    nn.Dropout(p=0.5),
    nn.Linear(128, image_height*image_width*color_channels),
    nn.Tanh()
)
```

```
custom_transforms = torchvision.transforms.Compose([
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize((0.5,), (0.5,))
])
```

2: A modified loss function

In GAN papers, the loss function to optimize G is min (log 1-D), but in practice folks practically use max log D

- because the first formulation has vanishing gradients early on
- Goodfellow et. al (2014)

In practice, works well:

Flip labels when training generator: real = fake, fake = real

2: A modified loss function

In GAN papers, the loss function to optimize G is min (log 1-D), but in practice folks practically use max log D

because the first formulation has vanishing gradients early on

Goodfellow et. al (2014)

In practice, works well:

Flip labels when training generator: real = fake, fake = real

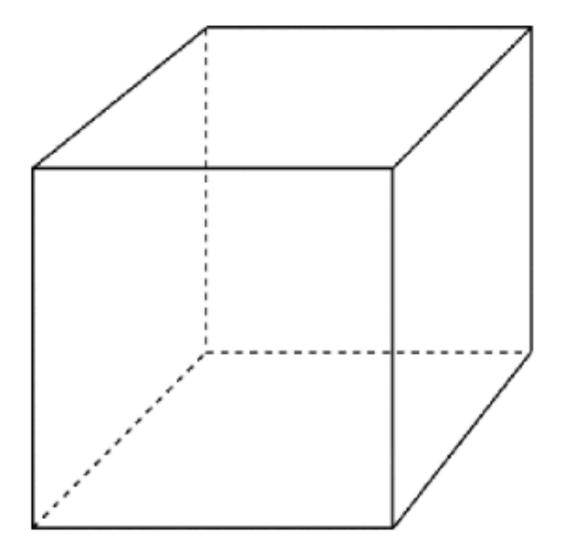
```
# real images
real_images = features.to(device)
real_labels = torch.ones(batch_size, device=device) # real label = 1

# generated (fake) images
noise = torch.randn(batch_size, latent_dim, 1, 1, device=device) # format NCHW
fake_images = model.generator_forward(noise)
fake_labels = torch.zeros(batch_size, device=device) # fake label = 0
flipped_fake_labels = real_labels # here, fake label = 1
```

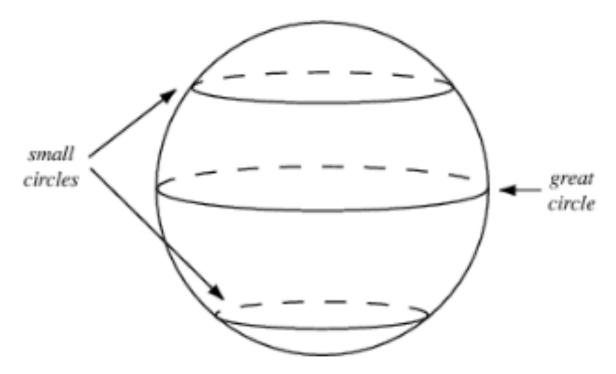
we used $\min -\log D$, which is the same

3: Use a spherical Z

Dont sample from a Uniform distribution



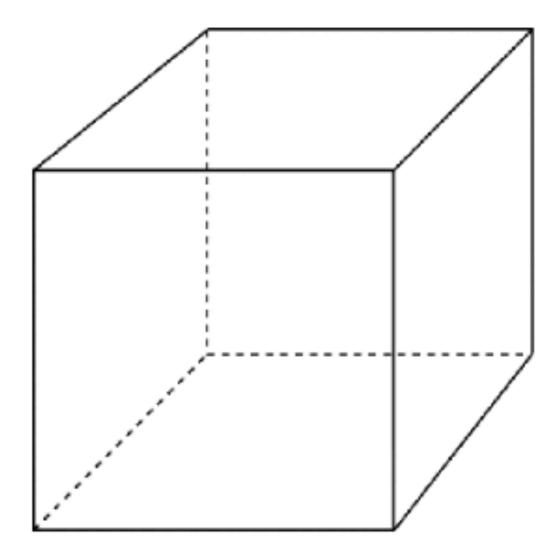
Sample from a gaussian distribution



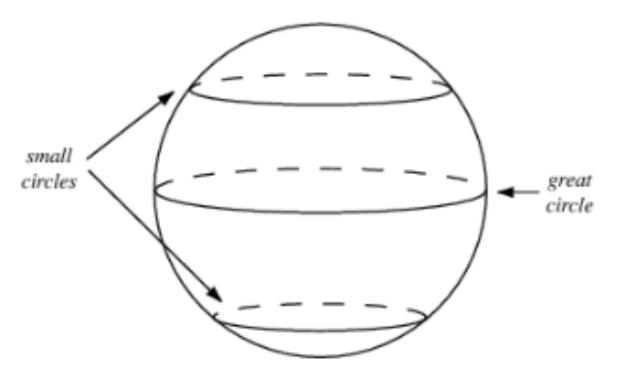
- . When doing interpolations, do the interpolation via a great circle, rather than a straight line from point A to point B
- Tom White's Sampling Generative Networks ref code https://github.com/dribnet/plat has more details

3: Use a spherical Z

Dont sample from a Uniform distribution



Sample from a gaussian distribution

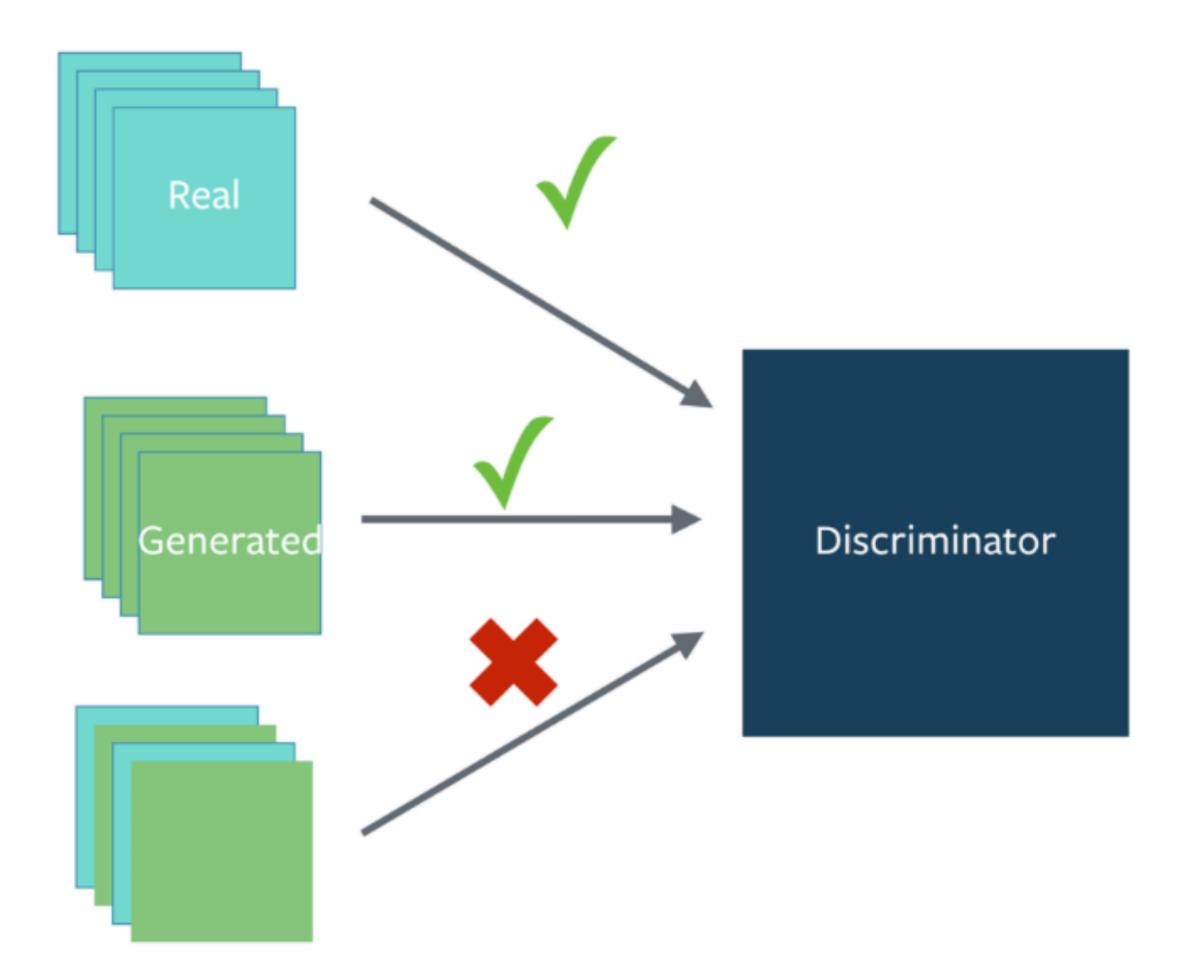


```
model.train()
for batch_idx, (features, _) in enumerate(train_loader):
   batch_size = features.size(0)
    # real images
   real_images = features.to(device)
   real_labels = torch.ones(batch size, device=device) # real label = 1
    # generated (fake) images
   noise = torch.randn(batch_size, latent_dim, 1, 1, device=device) # format NCHW
   fake images = model.generator forward(noise)
   fake_labels = torch.zeros(batch_size, device=device) # fake label = 0
   flipped_fake_labels = real_labels # here, fake label = 1
```

- . When doing interpolations, do the interpolation via a great circle, rather than a straight line from point A to point B
- Tom White's Sampling Generative Networks ref code https://github.com/dribnet/plat has more details

4: BatchNorm

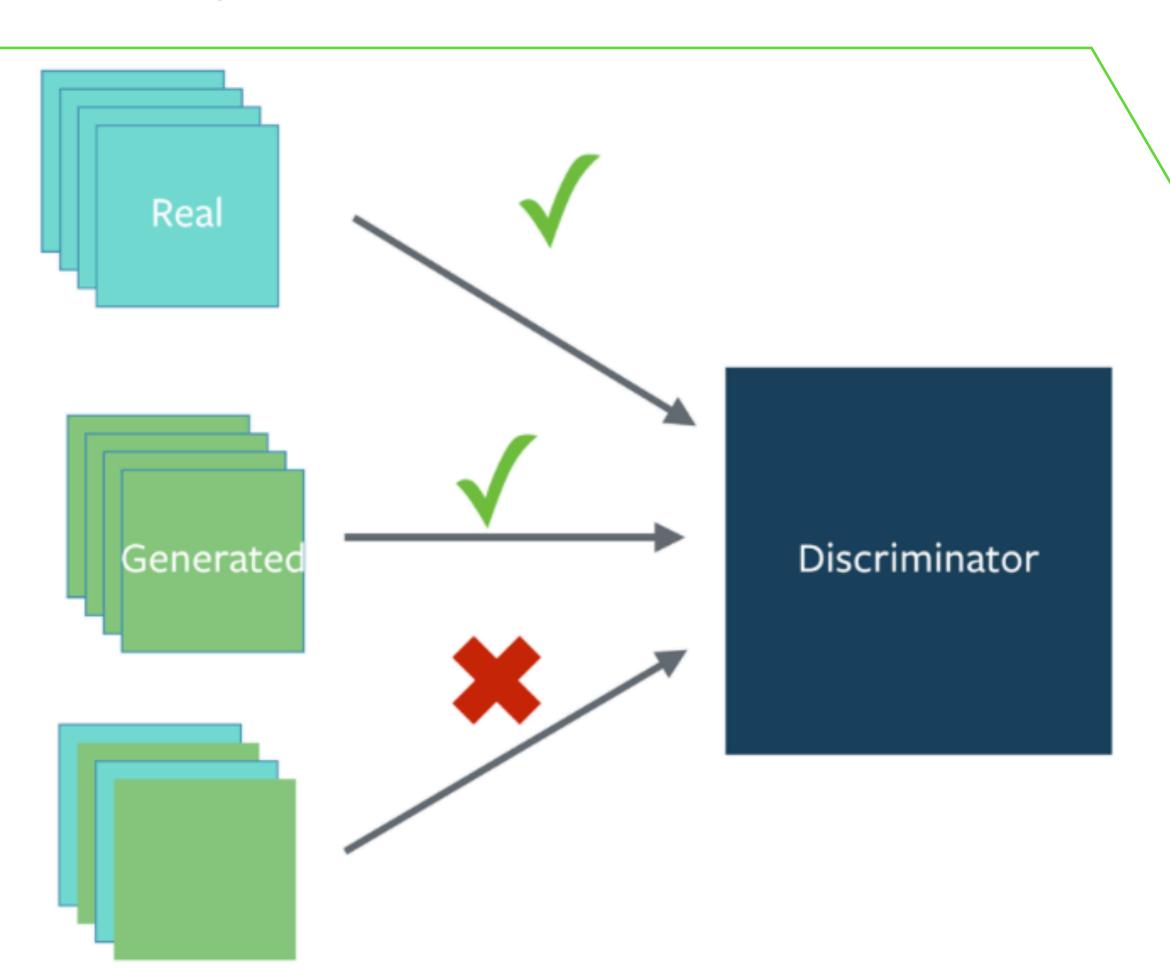
- · Construct different mini-batches for real and fake, i.e. each mini-batch needs to contain only all real images or all generated images.
- · when batchnorm is not an option use instance normalization (for each sample, subtract mean and divide by standard deviation).



4: BatchNorm

Construct different mini-batches for real and fake, i.e. each mini-batch needs to contain only all real images or all generated images.

· when batchnorm is not an option use instance normalization (for each sample, subtract mean and divide by standard deviation).



```
# get discriminator loss on real images
discr_pred_real = model.discriminator_forward(real_images).view(-1) # Nx1 -> N
real_loss = loss_fn(discr_pred_real, real_labels)
# real_loss.backward()
# get discriminator loss on fake images
discr_pred_fake = model.discriminator_forward(fake_images.detach()).view(-1)
fake_loss = loss_fn(discr_pred_fake, fake_labels)
# fake loss.backward()
# combined loss
discr_loss = 0.5*(real_loss + fake_loss)
discr_loss.backward()
```

BatchNorm in upcoming

02_dcgan-celeba.ipynb

```
class DCGAN(torch.nn.Module):
   def __init__(self, latent_dim=100,
                num_feat_maps_gen=64, num_feat_maps_dis=64,
                color_channels=3):
       super().__init__()
       self.generator = nn.Sequential(
           nn.ConvTranspose2d(latent_dim, num_feat_maps_gen*8,
                              kernel_size=4, stride=1, padding=0,
                              bias=False),
           nn.BatchNorm2d(num_feat_maps_gen*8),
           nn.LeakyReLU(inplace=True),
```

Implementing a GAN with convolutional layers

- 1. The Main Idea Behind GANs
- 2. The GAN Objective
- 3. Modifying the GAN Loss Function for Practical Use
- 4. A Simple GAN Generating Handwritten Digits in PyTorch
- 5. Tips and Tricks to Make GANs Work
- 6. A DCGAN for Generating Face Images in PyTorch
- 7. GAN Resources

Deep Convolutional GAN

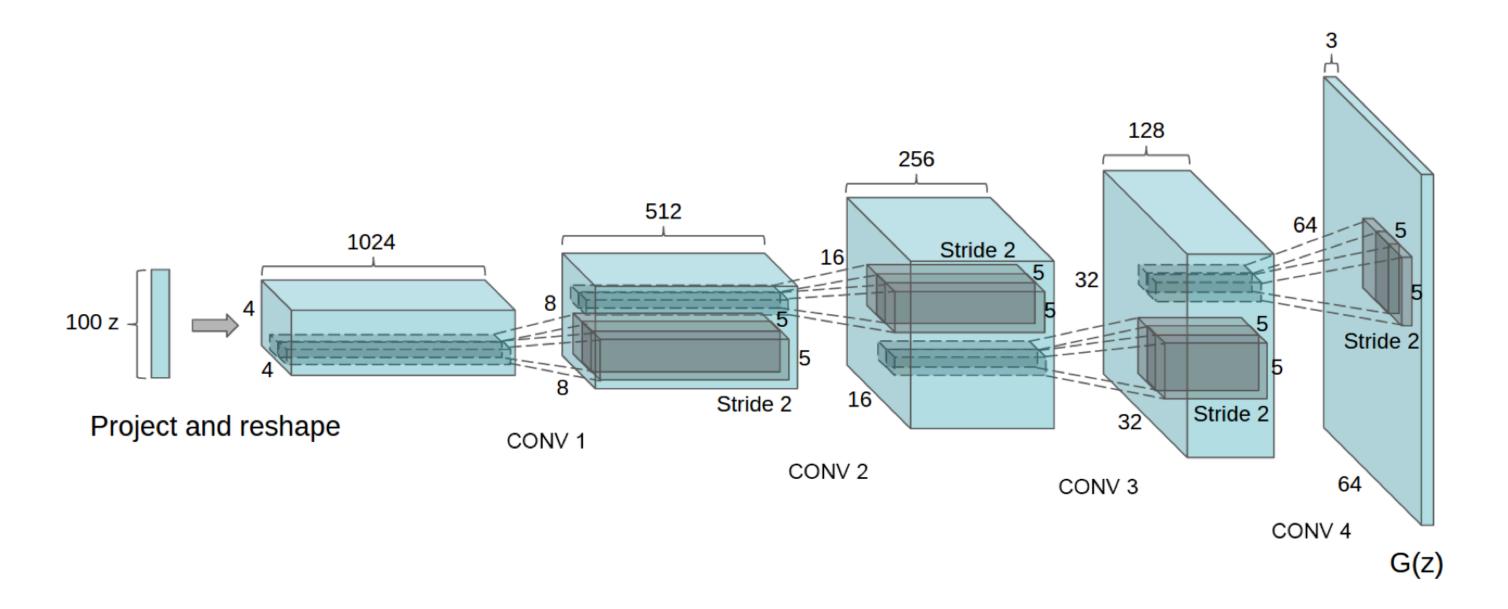
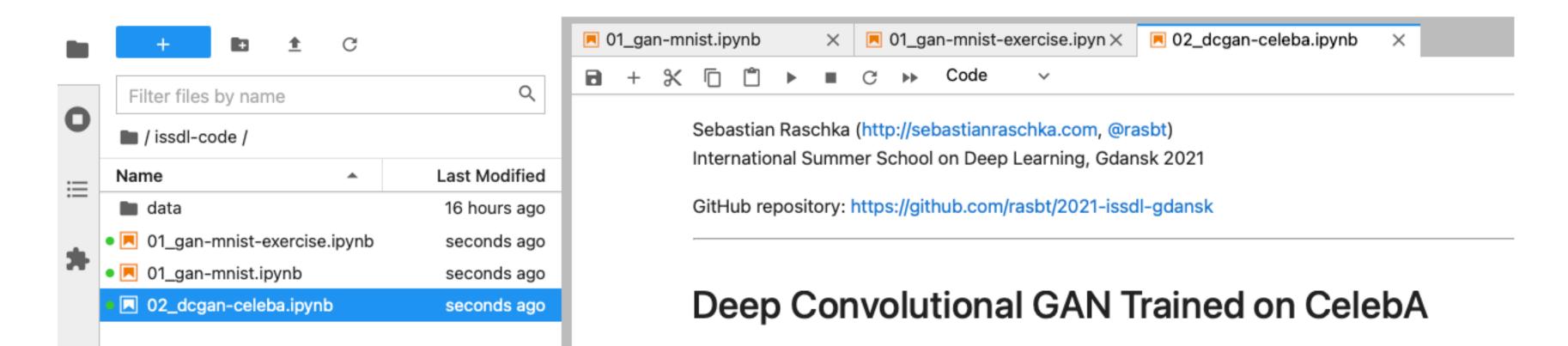


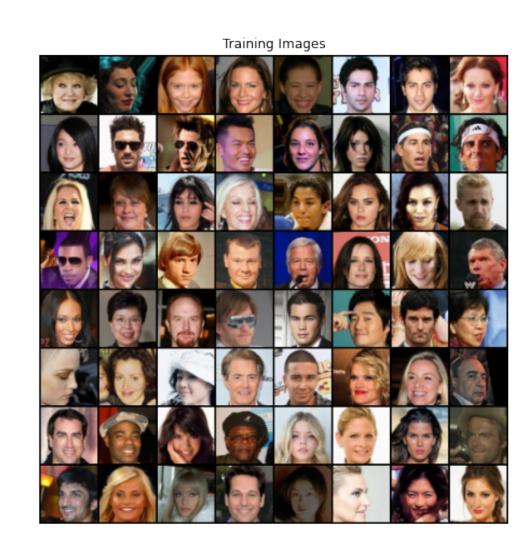
Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribution Z is projected to a small spatial extent convolutional representation with many feature maps. A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called deconvolutions) then convert this high level representation into a 64×64 pixel image. Notably, no fully connected or pooling layers are used.

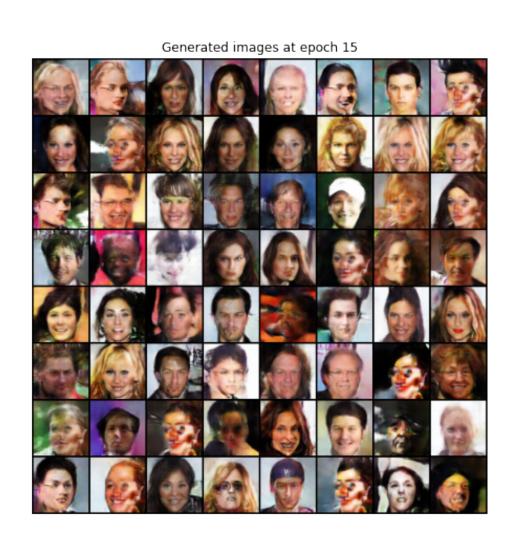
Radford, A., Metz, L., & Chintala, S. (2015). <u>Unsupervised representation learning with deep convolutional generative adversarial networks</u>. arXiv preprint arXiv:1511.06434.



Code:

https://github.com/rasbt/2021-issdl-gdansk





If the CelebA download causes problems (e.g., because the daily download quota was exceeded), you can download the dataset from the original CelebA page: https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Or download celeba.zip (1.7 Gb) and from https://drive.google.com/file/d/1m8-EBPgi5MRubrm6iQjafK2QMHDBMSfJ/view?

and unzip it in the notebook directory

A subselection of popular GANs and further reading resources

- 1. The Main Idea Behind GANs
- 2. The GAN Objective
- 3. Modifying the GAN Loss Function for Practical Use
- 4. A Simple GAN Generating Handwritten Digits in PyTorch
- 5. Tips and Tricks to Make GANs Work
- 6. A DCGAN for Generating Face Images in PyTorch
- 7. GAN Resources

GAN Resources

Wang, Z., She, Q. and Ward, T.E., 2021. **Generative adversarial networks in computer vision: A survey and taxonomy.** *ACM Computing Surveys (CSUR)*, *54*(2), pp.1-38. https://arxiv.org/abs/2001.06937

Gui, J., Sun, Z., Wen, Y., Tao, D. and Ye, J., 2020. **A review on generative adversarial networks: Algorithms, theory, and applications.** https://dl.acm.org/doi/pdf/10.1145/3439723

GAN Papers to Read in 2020

https://towardsdatascience.com/gan-papers-to-read-in-2020-2c708af5c0a4

A very much abbreviated timeline

layers are phased in via skip Improved loss (Wasserstein connections distance) and gradient penalty for Lipschitz Maps image from source to constraint Uses a spatial-temporal adversarial target domain, incl. inverse Convolutional and objective to synthesize videos onto mapping (cycle consistency) deconvolutional layers different types of inputs (segmentation masks, sketches, poses) Introduces a bunch of tricks: Fully connected layers feature matching, minibatch Adds margin as part of the discrimination, label smoothing, loss function. E.g., **PCCAN** historical averaging, virtual batch EBGAN (energy-based normalization, ... GAN) and MAGAN (margin adaption GAN) Video2video **Original CANs Improved CANs** hinge loss based GANs **GANS** 2014 2018 2015 2016 2019 2017 next slide Single image GAN scheme that captures the internal distribution Cycle GANs **BigGANs DCGAN** of patches within an Formalizes packing to image. A pyramid of tackle mode collapse: conv layers allows for LAPCAN **SinGANs** WGAN stack single images to dealing with different **PACGAN** double images to sizes. WGAN-GP provide more diversity **SACANS** Laplacian pyramid to generate higher resolution Adds self-attention to Boundary equilibrium: enforcing method to images **BEGAN** model long-range balance discriminator and generator plus dependencies Wasserstein distance based loss for training autoencoder based GANs Figure adapted from https://towardsdatascience.com/a-review-of-generative-adversarial-networks-9af21e94bda4

Progressive growing GAN: Start with

layers to generator and discriminator

small image and incrementally add

to increase output image size. The

BigGANs

Published as a conference paper at ICLR 2019

LARGE SCALE GAN TRAINING FOR HIGH FIDELITY NATURAL IMAGE SYNTHESIS

Andrew Brock*†
Heriot-Watt University
ajb5@hw.ac.uk

Jeff Donahue[†]
DeepMind
jeffdonahue@google.com

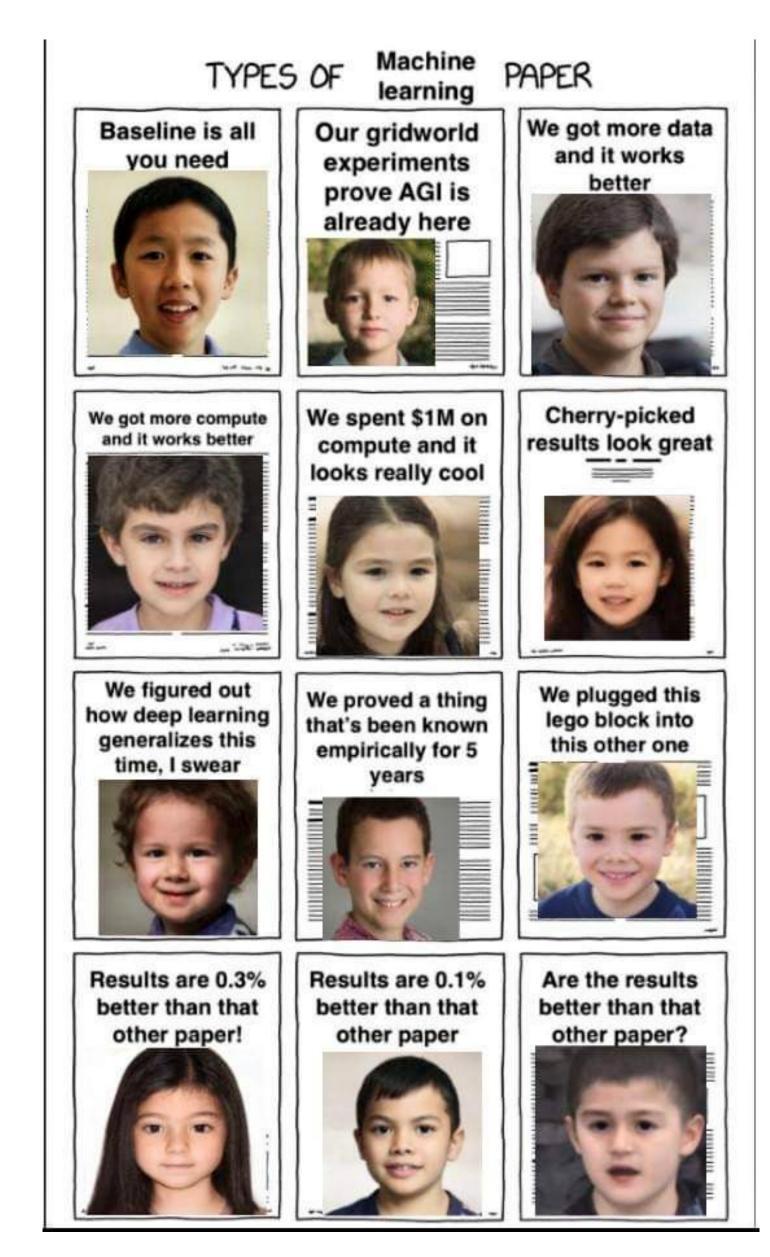
Karen Simonyan[†]
DeepMind
simonyan@google.com

https://arxiv.org/pdf/1905.01164.pdf

Figure 1: Class-conditional samples generated by our model.

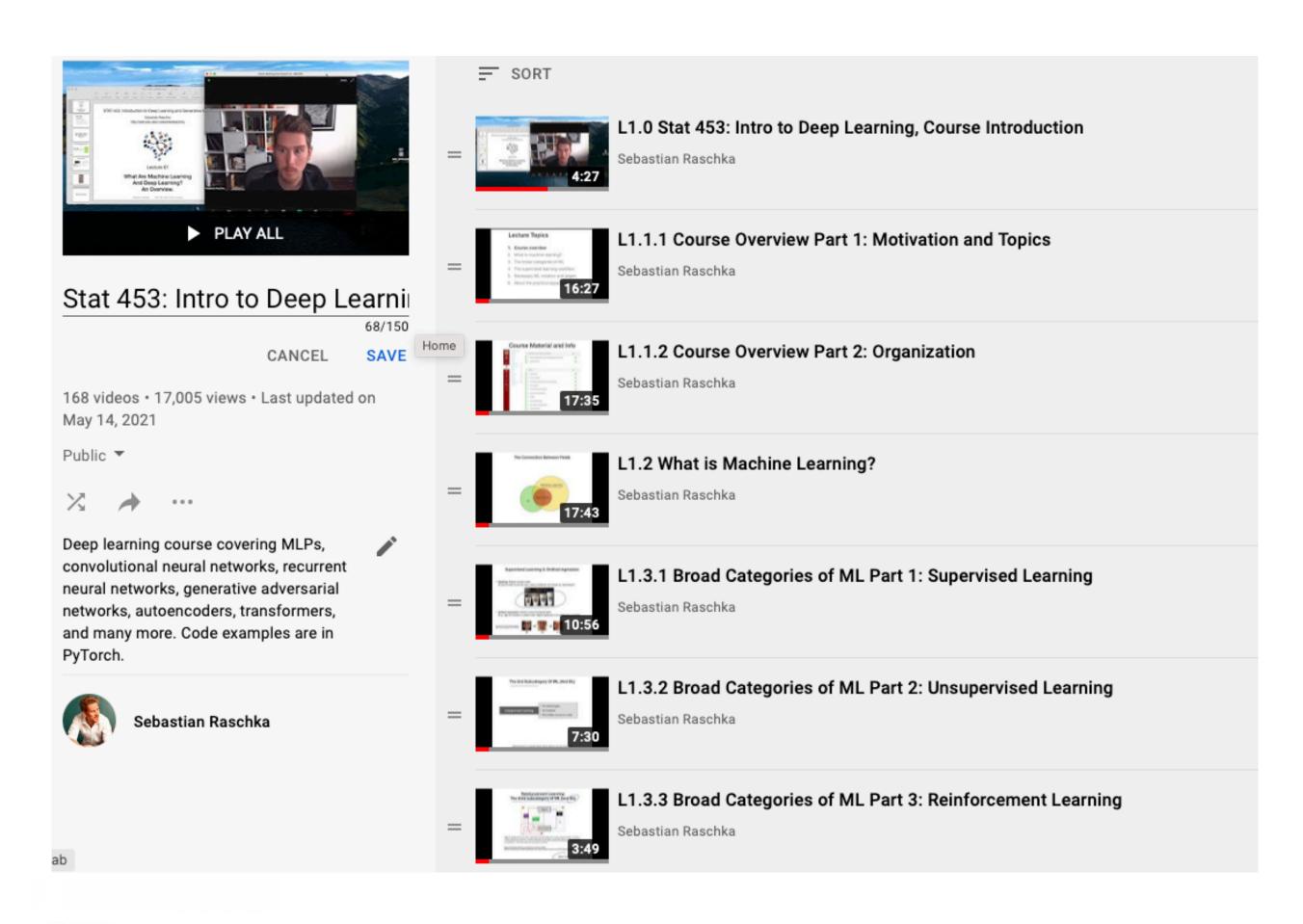
- A class-conditional GAN with scaled up model and batch size
- Uses self-attention (based on SAGAN) and hinge loss
- Uses conditional BatchNorm, spectral normalization for weights, the truncation trick (truncated Gaussian during inference), and many other tricks

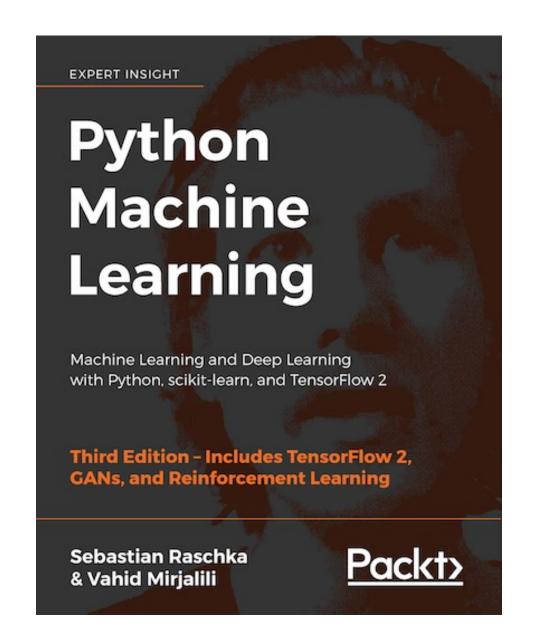
GANs are fun!

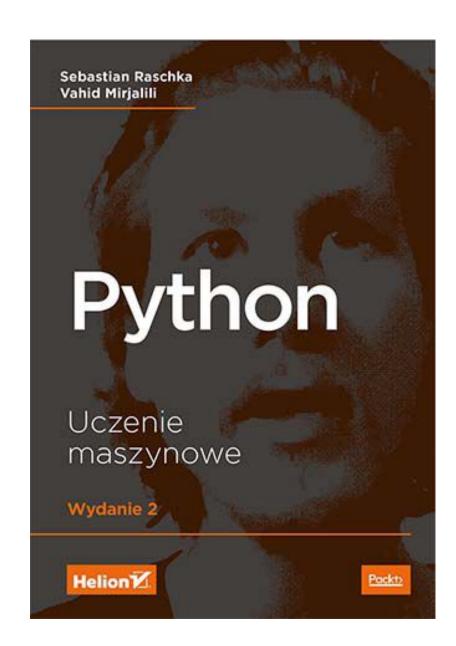


https://twitter.com/TheInsaneApp/status/1408516210099064833?s=20

46







https://sebastianraschka.com/books/

https://www.youtube.com/playlist?list=PLTKMiZHVd_2KJtIXOW0zFhFfBaJJilH51

