in ¥ f

#VSSonDL

&= Virtual Summer School on Deep Learning sissondL

July 5th - 9th 2021

4th International Summer School on Deep Learning - Virtual Edition

Introduction to
Generative Adversarial Networks

Sebastian Raschka

University of Wisconsin-Madison

Organizers Sponsors

o o
g' a 4/4 |§$
: : j I T
GDANSK UNIVERSITY
= dmaZon = ¢ * & CoRaeEy NVIDIA.
W W
"8 '8 JitTeam™
mmy BIOMEDICAL : 5 > of IT :
ENGINEERING @‘ 3AY S S FACULTY OF ELECTRONI fo
DEPARTMENT &% servodata
Di
HU ® H = BIOMEDICAL Digital Innovation 0] o H
| SiMa*"- 13 ez QiBAY SiMa®"-
dih DEPARTMENT dihs.ai

http://2021.dl-lab.eu

Sebastian Raschka

It all began in 2014

Generative Adversarial Networks = GAN/GANSs

arXiv.org > stat > arXiv:1406.2661

Help | Advanced

Statistics > Machine Learning

[Submitted on 10 Jun 2014]

Generative Adversarial Networks

lan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio

We propose a new framework for estimating generative models via an
adversarial process, in which we simultaneously train two models: a
generative model G that captures the data distribution, and a
discriminative model D that estimates the probability that a sample
came from the training data rather than G. The training procedure for
G is to maximize the probability of D making a mistake. This
framework corresponds to a minimax two-player game. In the space
of arbitrary functions G and D, a unique solution exists, with G
recovering the training data distribution and D equal to 1/2
everywhere. In the case where G and D are defined by multilayer
perceptrons, the entire system can be trained with backpropagation.
There is no need for any Markov chains or unrolled approximate
inference networks during either training or generation of samples.
Experiments demonstrate the potential of the framework through
qualitative and quantitative evaluation of the generated samples.

https://arxiv.org/abs/1406.2661

- International Summer School on Deep Learning 2021

https://arxiv.org/abs/1406.2661

Face generation has come a long way

2014 2015 2016 2017

Image source: https://blog.eduonix.com/artificial-intelligence/grand-finale-applications-gans/

Sebastian Raschka < International Summer School on Deep Learning 2021

https://thisstartupdoesnotexist.com

https://thiscatdoesnotexist.com

W

https://thisponydoesnotexist.net
https://thispersondoesnotexist.com

Sebastian Raschka - International Summer School on Deep Learning 2021

Today's Topics

1. The Main Idea Behind GANs

2. The GAN Objective

3. Modifying the GAN Loss Function for Practical Use

4. A Simple GAN Generating Handwritten Digits in PyTorch
5. Tips and Tricks to Make GANs Work

6. A DCGAN for Generating Face Images in PyTorch

/. GAN Resources

- International Summer School on Deep Learning 2021

Letting two neural networks
compete with each other

1. The Main Idea Behind GANs

2. The GAN Obijective

3. Modifying the GAN Loss Function for Practical Use

4. A Simple GAN Generating Handwritten Digits in PyTorch
5. Tips and Tricks to Make GANs Work

6. A DCGAN for Generating Face Images in PyTorch

/. GAN Resources

Sebastian Raschka - International Summer School on Deep Learning 2021

Generative Adversarial Networks (GAN)

The original purpose is to generate new data

Classically for generating new images, but applicable to
wide range of domains

Learns the training set distribution and can generate new
iImages that have never been seen before

- International Summer School on Deep Learning 2021

Deep Convolutional GAN (DCGAN or just GAN)

Real image

Training set o
Discriminator

/ / Predicted label:

) = Real (1)
/j" y

Generated (0)
/ Generated image

Noise vector

l. ..ci
:\
‘_‘

D.’ he

‘_','.A“
3
A
A »
"
. 4 ‘1
e
ol
‘_’rgl‘ly‘v

4'.‘ .§

o
iy

LA

.\'r\

\l’. Y

X

< S

2P 2
=
4

(Generator

Sebastian Raschka < International Summer School on Deep Learning 2021

Step 1.1: Train Discriminator

/ Real image

Training set
J b 0 Discriminator

i =P p(y = "real image” |x)

Train to predict that real image is real

Sebastian Raschka - International Summer School on Deep Learning 2021

Noise vector

Sebastian Raschka

Step 1.2: Train Discriminator

Discriminator

) -

' ' p(y = "real image”|x

N—

""""""""""""

¢
I
g

/
L
/

Generated image

.Generator

Train to predict that fake image is fake

<> International Summer School on Deep Learning 2021

10

Sebastian Raschka

Step 2: Train Generator

) -

p(y = "real image”|x)

/
—wl-
/

Generate

image

(Generator

Train to predict that fake image is real

International Summer School on Deep Learning 2021

11

Adversarial Game

Discriminator: learns to become

better at distinguishing real from generated
images

Generator: learns to generate better images
to fool the discriminator

- International Summer School on Deep Learning 2021

Sebastian Raschka

How do the loss functions
look like?

1. The Main Idea Behind GANs

2. The GAN Objective

3. Modifying the GAN Loss Function for Practical Use

4. A Simple GAN Generating Handwritten Digits in PyTorch
5. Tips and Tricks to Make GANs Work

6. A DCGAN for Generating Face Images in PyTorch

/. GAN Resources

- International Summer School on Deep Learning 2021

13

Sebastian Raschka

minmax V(D,G) = E
G D

v

GAN Objective

Sz rpaaca () 108 D(@)] + Ezvp, (2)

Real Image —4|_>
—> Generated Image

<> International Summer School on Deep Learning 2021

log(1 — D(G(2)))]

14

Turning the minmax optimization setting
into a minimization problem for SGD

3. Modifying the GAN Loss Function for Practical Use

- International Summer School on Deep Learning 2021

Simplified GAN Loss

(1) Minimize discriminator loss

Generated image

l

min — (Ey~p, [log D(2)] + E-np. [log(1 — D(G(2)))])

using "original” labels

Real images: class label 1
Generated images: class label O

- International Summer School on Deep Learning 2021

Simplified GAN Loss

(1) Minimize discriminator loss

Generated image

l

min — (Ey~p, log D(2)] + E.~p. [log(1 — D(G(2)))])

value range: [0,1] —

want it to predict real -> 1
(correct prediction)

Ilog D(:(:)I

value range: [—0o0,0]

- (Ez~p, [log D(z)]) |

loss value range: |00, 0]

- International Summer School on Deep Learning 2021

Simplified GAN Loss

(1) Minimize discriminator loss

Generated image

l

min — (Ex~p, log D(2)] + E.~p. [log(1 — D(G(2)))])

/ —

predict generated -> 0
(correct prediction)
1 —D(G(2))
| |

value range: |1, 0]

value range: |0, 1]

— (Eznp. log(1 — D(G(2)))])
| |

loss value range: [O, OO]

- International Summer School on Deep Learning 2021

Simplified GAN Loss

(2) Minimize generator loss (to fool discriminator)

Generated image

l

m(%n — (Ez~p, |log D(G(2))])

Want to fool discriminator to make a wrong prediction

Generated images: predict class label 1

- International Summer School on Deep Learning 2021

Simplified GAN Loss

(2) Minimize generator loss (to fool discriminator)

Generated image

l

m(%n — (E2~p, log |D(G(Z))|D

____ valuerange: [0, 1]

want it to predietgenerated—0

predict real -> 1

llog D(G(Z))I

value range: |—o0, 0]

- (Ezp, [l0g D(G(Z‘))DI

loss value range: |00, 0]

- International Summer School on Deep Learning 2021

Negative Log-Likelihood /
Binary Cross Entropy Loss

ity =1" ()
N ify*” =0
\4-\ /
L . v
. —
yf(i)

- International Summer School on Deep Learning 2021

Negative Log-Likelihood /
Binary Cross Entropy Loss

n

£w) = 23 [(5108 (59) + (1— 49) 1og (1 - 5))

1=1
[T et images y=[1 1 ... 1
=111 ... 1
want ¥ = |
}
—> Generated Image

generated images y =0 0 ... O]

want ¥ =10 0 ... O

Sebastian Raschka - International Summer School on Deep Learning 2021

22

L(w)

Negative Log-Likelihood /
Binary Cross Entropy Loss

n

5[(7 () (-0 15

1=1

generated images y =0 0 ... 0]

| 1abel flip
y=1[11 .. 1] j_»
" Generator [l Generated Image

g=1011 .. 1]

want to fool the discriminator

Sebastian Raschka

<> International Summer School on Deep Learning 2021

23

Sebastian Raschka

Implementing our first GAN

1. The Main Idea Behind GANs

2. The GAN Objective

3. Modifying the GAN Loss Function for Practical Use

4. A Simple GAN Generating Handwritten Digits in PyTorch
5. Tips and Tricks to Make GANs Work

6. A DCGAN for Generating Face Images in PyTorch

/. GAN Resources

- International Summer School on Deep Learning 2021

24

Sebastian Raschka

self.generator = nn.Sequential(
nn.Linear(latent_dim, 128),
nn.LeakyReLU(inplace=True),
nn.Dropout(p=0.5),
nn.Linear(128, image_heightkimage_width*color_channels),
L L I S S B S S
Exercise 1:
HHRHRHBBHBHBRHRHY
Which activation function,
tanh or logistic sigmoid?
Uncomment the correct one below.

a)

nn.Sigmoid
#

b)

nn.Tanh

e e e T L e PR A e R e

International Summer School on Deep Learning 2021

25

model.train() . . # generated (fake) images
for batch_idx, (features, _) in enumerate(train_loader): noise = torch.randn(batch_size, latent_dim, 1, 1, device=device)

fake_images = model.generator_forward(noise)

batch_size = features.size(0)

. B R
real images At ottt R

real_images = features.to(device) ## Exercise 3: ##
HHABHBH B R B R B R BRI

R ## Which labels for the generated images?

Exercise 2: ## ## Uncomment the correct code below

HHBHB R A B BB HBH SRR

Which labels for the real images? # a)

Uncomment the correct code below # fake labels = torch.zeros(batch size, device=device)
#

a) # b)

z AU B G AR R S e G AR, # fake labels = torch.ones(batch _size, device=device)

b) RABHBH BB H B R B B BB R B R B EH B R B R B R B R B R B BB R B R BH R B R B R BR TR

real labels = torch.ones(batch _size, device=device) .

SRR R BB flipped_fake_labels = real_labels

Sebastian Raschka International Summer School on Deep Learning 2021

+ Code + Text &2 Copy to Drive

Q Sebastian Raschka (http://sebastianraschka.com, @rasbt)
International Summer School on Deep Learning, Gdansk 2021

<>
GitHub repository: https://github.com/rasbt/2021-issdl-gdansk

Introduction to Generative Adversarial Networks

01 - A Simple GAN Trained on MNIST

https://colab.research.google.com/qgithub/rasbt/2021 -issdl-gdansk/blob/main/01 gan-mnist-exercise.ipynb

[
Ready T TE T[] Re-run automatically ® C

[
Sebastian Raschka (http://sebastianraschka.com, @rasbt)
:: International Summer School on Deep Learning, Gdansk 2021
C.} GitHub repository: https://github.com/rasbt/2021-issdl-gdansk
Introduction to Generative Adversarial Networks
= 01 -- A Simple GAN Trained on MNIST
©

Imnarte

https://deepnote.com/project/2021 -issdl-gdansk-gUQLtJxgQeKjONrLtxDeow/%2F01 gan-mnist-exercise.ipynb

Sebastian Raschka - International Summer School on Deep Learning 2021

27

https://colab.research.google.com/github/rasbt/2021-issdl-gdansk/blob/main/01_gan-mnist-exercise.ipynb
https://deepnote.com/project/2021-issdl-gdansk-qUQLtJxgQeKj0NrLtxDeow/%2F01_gan-mnist-exercise.ipynb

Sebastian Raschka

Looking at some of the best
practices for GAN training

1. The Main Idea Behind GANs

2. The GAN Objective

3. Modifying the GAN Loss Function for Practical Use

4. A Simple GAN Generating Handwritten Digits in PyTorch
5. Tips and Tricks to Make GANs Work

6. A DCGAN for Generating Face Images in PyTorch

/. GAN Resources

- International Summer School on Deep Learning 2021

28

Sebastian Raschka

P master ~ P 1branch © 0tags Go to file Add file ~

° soumith Update README.md 7063732 on Mar 4, 2020 O 6 commits
" images first commit 5 years ago
'Y README.md Update README.md 16 months ago
=~ README.md

(this list is no longer maintained, and | am not sure how relevant it is in 2020)

How to Train a GAN? Tips and tricks to make GANs work

While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of
these models, we use a bunch of tricks to train them and make them stable day to day.

Here are a summary of some of the tricks.
Here's a link to the authors of this document

If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If
we find it to be reasonable and verified, we will merge it in.

https://github.com/soumith/ganhacks

<> International Summer School on Deep Learning 2021

29

https://github.com/soumith/ganhacks

1. Normalize the inputs

¢ normalize the images between -1 and 1
e Tanh as the last layer of the generator output

Sebastian Raschka

<> International Summer School on Deep Learning 2021

30

1. Normalize the inputs

Q * normalize the images between -1 and 1
Q e Tanh as the last layer of the generator output

self.generator = nn.Sequential(
nn.Linear(latent dim, 128),
nn.LeakyReLU(inplace=True),
nn.Dropout(p=0.5),

nn.Linear (128, image height*image width*color channels),

nn.Tanh()

custom transforms = torchvision.transforms.Compose([

torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5,),

1)

Sebastian Raschka

(0.5,))

<> International Summer School on Deep Learning 2021

31

2: A modified loss function

In GAN papers, the loss function to optimize Gis min (log 1-D) , but in practice folks practically use max log D

¢ because the first formulation has vanishing gradients early on
e Goodfellow et. al (2014)

In practice, works well:

e Flip labels when training generator: real = fake, fake = real

Sebastian Raschka < International Summer School on Deep Learning 2021

32

2: A modified loss function

In GAN papers, the loss function to optimize Gis min (log 1-D) , but in practice folks practically use max log D Q

¢ because the first formulation has vanishing gradients early on
e Goodfellow et. al (2014)

In practice, works well:

Q e Flip labels when training generator: real = fake, fake = real

real 1images
real images
real labels

= features.to(device)

= torch.ones(batch size, device=device) # real label = 1

generated (fake) images

noise = torch.randn(batch size, latent dim, 1, 1, device=device) # format NCHW
fake images = model.generator forward(noise)

fake labels = torch.zeros(batch size, device=device) # fake label = 0
flipped fake labels = real_ labels # here, fake label = 1

optimizer gen.zero grad()

get discriminator loss on fake images with flipped labels

discr pred fake = model.discriminator forward(fake images).view(-1)
gener loss = loss_fn(discr pred fake, flipped fake labels)

gener loss.backward()

optimizer gen.step()

Sebastian Raschka < International Summer School on Deep Learning 2021

we used min -log D, which is the same

33

3: Use a spherical Z

« Dont sample from a Uniform distribution

e

.............

 Sample from a gaussian distribution

small /

circles

great
circle

* When doing interpolations, do the interpolation via a great circle, rather than a straight line from point A to

point B

e Tom White's Sampling Generative Networks ref code https://github.com/dribnet/plat has more details

Sebastian Raschka

<> International Summer School on Deep Learning 2021

34

Q 3: Use a spherical Z

« Dont sample from a Uniform distribution

model.train()
for batch idx, (features,) in enumerate(train loader):

batch size = features.size(0)

e

real images
real images = features.to(device)
real labels = torch.ones(batch size, device=device) # real label = 1

generated (fake) images

noise = torch.randn(batch size, latent dim, 1, 1, device=device) # format NCHW
fake images = model.generator forward(noise)

fake labels = torch.zeros(batch size, device=device) # fake label = 0

* Sample from a gaussian distribution flipped fake labels = real_ labels # here, fake label = 1
small /
circles < Seat
circle

* When doing interpolations, do the interpolation via a great circle, rather than a straight line from point A to
point B

e Tom White's Sampling Generative Networks ref code https://github.com/dribnet/plat has more details

Sebastian Raschka < International Summer School on Deep Learning 2021

4: BatchNorm

« Construct different mini-batches for real and fake, i.e. each mini-batch needs to contain only all real images
or all generated images.

* when batchnorm is not an option use instance normalization (for each sample, subtract mean and divide by
standard deviation).

Discriminator

Sebastian Raschka - International Summer School on Deep Learning 2021

36

get discriminator loss on real images
4: BatChNorm discr pred real = model.discriminator forward(real images).view(-1) # NxI -> N
real loss = loss _fn(discr pred real, real labels)
real loss.backward()

Q « Construct different mini-batches for real and fake, i.e. each mini-batch needs to contain only all real images
or all generated images. # get discriminator loss on fake images
. . . L. . discr pred fake = model.discriminator forward(fake images.detach()).view(-1)
Q when batchnorm is not an option use instance normalization (for each sample, subtract mean and divide by fake loss = loss_fn(discr pred fake, fake labels)
— — B r —
standard deviation). # fake loss.backward()

\\\\ # combined loss

discr loss = 0.5*%(real loss + fake loss)
| discr loss.backward()

BatchNorm in upcoming
02_dcgan-celeba.ipynb

class DCGAN(torch.nn.Module):

def init_(self, latent_dim=100,
num_feat maps gen=64, num feat maps dis=64,

Generate - Discri minator color channels=3):

super()._ init ()

self.generator = nn.Sequential (
nn.ConvTranspose2d(latent dim, num feat maps gen*8,
kernel size=4, stride=1, padding=0,
bias=False),
nn.BatchNorm2d(num feat maps gen*8),
nn.LeakyReLU(inplace=True),

P73

Sebastian Raschka < International Summer School on Deep Learning 2021

37

Sebastian Raschka

<> International Summer School on Deep Learning 2021

38

Sebastian Raschka

Implementing a GAN with
convolutional layers

1. The Main Idea Behind GANs

2. The GAN Obijective

3. Modifying the GAN Loss Function for Practical Use

4. A Simple GAN Generating Handwritten Digits in PyTorch
5. Tips and Tricks to Make GANs Work

6. A DCGAN for Generating Face Images in PyTorch

/. GAN Resources

<> International Summer School on Deep Learning 2021

39

Deep Convolutional GAN

3
rL\
128 \

\o

\ =
\ O

W

Y
\

N\
l“\
I\

|
|

1
I

100 z -] ——1 ==

|
/

/
/

|

—

Ul

Stride 2 16

Project and reshape

CONV 2

CONV 4 -
G(2)

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called

deconvolutions) then convert this high level representation into a 64 X 64 pixel image. Notably, no
fully connected or pooling layers are used.

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with

deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

Sebastian Raschka < International Summer School on Deep Learning 2021

40

https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434

B 1 C ® 01_gan-mnist.ipynb X W 01_gan-mnist-exercise.ipyn X = m 02_dcgan-celeba.ipynb X
B + X0 » m C » Code v

Q
o B / issdl-code | Sebastian Raschka (http://sebastianraschka.com, @rasbt)
International Summer School on Deep Learning, Gdansk 2021
= Name - Last Modified
| ma data 16 hours ago GitHub repository: https://github.com/rasbt/2021-issdl-gdansk
e ™ 01_gan-mnist-exercise.ipynb seconds ago
e W 01_gan-mnist.ipynb seconds ago
[A] 02_dcgan-celeba.ipynb seconds ago Deep Convolutional GAN Trained on CelebA

Training Images Generated |mages at epoch 15

eV <1 Ulelale

FET or mm

‘g ..‘[:9 U ?‘ - r&
bl 3

V

Code: G{' ‘z ‘3\\

sil=
https://github.com/rasbt/2021 -issdl-gdansk ‘2‘['3’ ‘]

If the CelebA download causes problems (e.g., because the daily download quota was exceeded), you can download the
dataset from the original CelebA page: https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Or download celeba.zip (1.7 Gb) and from https://drive.google.com/file/d/1m8-EBPgiSMRubrm6iQjafK2QMHDBMSTfJ/view?
usp=sharing
and unzip it in the notebook directory

Sebastian Raschka - International Summer School on Deep Learning 2021

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://drive.google.com/file/d/1m8-EBPgi5MRubrm6iQjafK2QMHDBMSfJ/view?usp=sharing
https://drive.google.com/file/d/1m8-EBPgi5MRubrm6iQjafK2QMHDBMSfJ/view?usp=sharing
https://github.com/rasbt/2021-issdl-gdansk

Sebastian Raschka

A subselection of popular GANs
and further reading resources

1. The Main |dea Behind GANs

2. The GAN Obijective

3. Modifying the GAN Loss Function for Practical Use

4. A Simple GAN Generating Handwritten Digits in PyTorch
5. Tips and Tricks to Make GANs Work

6. A DCGAN for Generating Face Images in PyTorch

7. GAN Resources

- International Summer School on Deep Learning 2021

42

GAN Resources

Wang, Z., She, Q. and Ward, T.E., 2021.

Generative adversarial networks in computer vision: A survey and taxonomy.
ACM Computing Surveys (CSUR), 54(2), pp.1-38.
https://arxiv.org/abs/2001.06937

Gui, J., Sun, Z., Wen, Y., Tao, D. and Ye, J., 2020.
A review on generative adversarial networks: Algorithms, theory, and applications.
https://dl.acm.org/doi/pdf/10.1145/3439723

GAN Papers to Read in 2020
https://towardsdatascience.com/gan-papers-to-read-in-2020-2c/708af5c0a4

- International Summer School on Deep Learning 2021

https://dl.acm.org/doi/pdf/10.1145/3439723
https://arxiv.org/abs/2001.06937
https://towardsdatascience.com/gan-papers-to-read-in-2020-2c708af5c0a4

- . - Progressive growing GAN: Start with
Il di lly add

A very much abbreviated timeline ..
to increase output image size. The

Improved loss (Wasserstein layers are phased in via skip

distance) and gradient connections
Maps image from source to penalty for Lipschitz
target domain, incl. inverse constraint Uses a spatial-temporal adversarial
Convolutional and mapping (cycle consistency) ‘ objective to synthesize videos onto

different types of inputs (segmentation
masks, sketches, poses)

deconvolutional layers

Introduces a bunch of tricks:

Fully connected layers feature matching, minibatch
discrimination, label smoothing,
historical averaging, virtual batch
normalization, ...

Adds margin as part of the
loss function. E.g.,
EBGAN (energy-based
GAN) and MAGAN
(margin adaption GAN)

ooooooooooooo
................

/

hinge loss based CANS]

Improved CAN{]

Original CANS:)

2018 2019
: ! : . . t sli
: ! ; Single image GAN : next slide
: E : scheme that captures v /
Poeeeneneeneee L‘[DCGAN} ------------------------------ PR Lo-(:cycue GANsJ the internal distribution _GigcAst
! _ _ : of patches within an ~
: Formalizes packing to : image. A pyramid of N
. -LO-[LAPC A'ﬂ tackle mode collapse: \
stack single images to

WGANJ conv layers allows for ---»—[SincAst)
dealing with different

/ double imagesto T ""(}ACGAN sizes.
rovide more diversit WGAN-GPJ ----------- o
Laplacian pyramid to P y '-----------------Lv-[SACANs:)

generate higher resolution

Adds self-attention to

images Boundary_qulll_brlum: enforcing method to/t (BECAN) ol loreerange
balance discriminator and generator plus g-rang
Wasserstein distance based loss for dependencies
trammg autoencoder based GANs Figure adapted from https://towardsdatascience.com/a-review-of-generative-adversarial-networks-9af21e94bda4

- International Summer School on Deep Learning 2021

https://towardsdatascience.com/a-review-of-generative-adversarial-networks-9af21e94bda4

Published as a conference paper at ICLR 2019

LLARGE SCALE GAN TRAINING FOR
HIGH FIDELITY NATURAL IMAGE SYNTHESIS

Andrew Brock* Jeff Donahue’ Karen Simonyan'
Heriot-Watt University DeepMind DeepMind
ajb5@hw.ac.uk jeffdonahuel@google.com simonyan@google.com

https://arxiv.org/pdf/1905.01164.pdf

Figure 1: Class-conditional samples generated by our model.

* A class-conditional GAN with scaled up model and batch size
 Uses self-attention (based on SAGAN) and hinge loss

» Uses conditional BatchNorm, spectral normalization for weights, the truncation trick
(truncated Gaussian during inference), and many other tricks

Sebastian Raschka - International Summer School on Deep Learning 2021 45

https://arxiv.org/pdf/1905.01164.pdf

Sebastian Raschka

GANSs are fun!

Machine
TYPES OF teaming PAPER
Baseline is all Our gridworld We got more data
you need experiments and it works
prove AGl is better

- L ™Y

already here

We got more compute
and it works better

We spent $1M on
compute and it
looks really cool

Cherry-picked
results look great

- — -

We figured out
how deep learning
generalizes this
time, | swear

We proved a thing
that's been known
empirically for 5
years

We plugged this
lego block into
this other one

Results are 0.3%
better than that
other paper!

__=A

Results are 0.1%
better than that
other paper

Are the results
better than that
other ?

- International Summer School on Deep Learning 2021

https://twitter.com/Thelnsane App/status/14085162100990648337s=20

https://twitter.com/TheInsaneApp/status/1408516210099064833?s=20

p PLAY ALL

Stat 453: Intro to

— EXPERT INSIGHT Sebastian Raschka
SORT Vahid Mirjalili

L1.0 Stat 453: Intro to Deep Learning, Course Introduction Pyt h o n
®
Machine

Learning Python

Sebastian Raschka

L1.1.1 Course Overview Part 1: Motivation and Topics

Sebastian Raschka

Deep Learnil

68/150
Home

Machine Learning and Deep Learning
CANCEL SAVE

L1.1.2 Course Overview Part 2: Organization I Do It ears A ansorFlow 2

Sebastian Raschka

168 videos * 17,005 views * Last updated on UCZ@ ﬂie
May 14, 2021 maszynowe
Public ¥ L1.2 What is Machine Learning?
y- A - Sebastian Raschka
. . ~ Sebastian Raschka
Deep learning course covering MLPs, 7 & Vahid Mirjalili PCICk'l')

convolutional neural networks, recurrent
neural networks, generative adversarial
networks, autoencoders, transformers,
and many more. Code examples are in

PyTorch.

6\ Sebastian Raschka -
e

ab

3 YouTube

Sebastian Raschka

L1.3.1 Broad Categories of ML Part 1: Supervised Learning

Sebastian Raschka

https://sebastianraschka.com/books/

L1.3.2 Broad Categories of ML Part 2: Unsupervised Learning

Sebastian Raschka

L1.3.3 Broad Categories of ML Part 3: Reinforcement Learning

Sebastian Raschka

https://www.youtube.com/playlist?list=PLTKMiZHVd 2KJtIXOWO0zFhFfBaJJilH51 il @rasbt

- International Summer School on Deep Learning 2021

47

https://sebastianraschka.com/books/
https://twitter.com/rasbt
https://www.youtube.com/playlist?list=PLTKMiZHVd_2KJtIXOW0zFhFfBaJJilH51

