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Part 1

(1) Intro to Machine Learning

	      What is Machine Learning

	 	 Deep Learning Frameworks

	



Sebastian Raschka, Chan Zuckerberg Initiative -- Seed Networks CompBio 2021 5

Image source: https://sebastianraschka.com/blog/2020/intro-to-dl-ch01.html

Intro to Machine Learning > What is Machine Learning?

https://sebastianraschka.com/blog/2020/intro-to-dl-ch01.html
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Labeled data

Direct feedback

Predict outcome/future

No labels/targets

No feedback

Find hidden structure in data

Decision process

Reward system

Learn series of actions

Reinforcement Learning

Unsupervised Learning

Supervised Learning

The 3 Broad Categories of ML (and DL)

Image source: Raschka and Mirjalili (2019). Python Machine Learning, 3rd Edition. 
https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750

"Label learning"


‣ Regression

‣ Classification

Focus of today's talk

Intro to Machine Learning > What is Machine Learning?

https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750
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Machine Learning

AI
Deep Learning

E.g., symbolic expressions,  
logic rules / "handcrafted" 
nested if-else programming  
statements ...

E.g., ML deep neural networks

capable of automatic feature 

extraction

E.g.,  
generalized linear models,  
tree-based methods,

"shallow" networks, 
support vector machines, 
nearest neighbors, ...

The Connection Between Fields

Image source: https://sebastianraschka.com/blog/2020/intro-to-dl-ch01.html

Intro to Machine Learning > What is Machine Learning?

https://sebastianraschka.com/blog/2020/intro-to-dl-ch01.html
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2000s:

-  OpenNN, Torch, Matlab


2010s:

- (Multi)-GPU support: Caffe, config files;   Chainer imperative;     Theano declarative   


2015s:

-  TensorFlow (Google), declarative

-  Caffe2 (FAIR, by TensorFlow dev)

- CNTK (Microsoft)

- DyNet (Carnegie Mellon University)

- Paddle Paddle (Baidu)

-  MXNet (Amazon support), declarative & imperative "mix"

-  Keras API

-  PyTorch (FAIR), imperative (Torch and Chainer)


Intro to Machine Learning > Deep Learning Frameworks

Deep Learning Frameworks: An Abbreviated History
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2000s:

- OpenNN, Torch, Matlab


2010s:

- Caffe, config files;   Chainer imperative;     Theano declarative   


2015s:

- TensorFlow (Google), declarative

- Caffe2 (FAIR, by TensorFlow dev)

- CNTK (Microsoft)

- MXNet (Amazon support), declarative & imperative "mix"

...

- Keras

- PyTorch (FAIR), imperative (Torch and Chainer)


2021:

- TensorFlow v2

- PyTorch

- JAX

(PyMC3)

Things Looks Much Simpler in 2021

Intro to Machine Learning > Deep Learning Frameworks
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Part 2

(2) Methods that Work 
     Tabular Data


 Images

 Sequences & Text

 Improving Performance
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Structured vs Unstructured Data

Image source: https://sebastianraschka.com/blog/2020/intro-to-dl-ch01.html

Methods That Work > Tabular Data

https://sebastianraschka.com/blog/2020/intro-to-dl-ch01.html
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Supervised Learning Methods for Tabular Data

Linear classifier/regressor as a good baseline:  
     Linear / (Multinomial) logistic regression

Robust non-linear classifier without tuning:  
     Random forests

State-of-the-art model for tabular data:  
     Gradient boosting (XGBoost, LightGBM, HistGradientBoostingClassifier...)

Methods That Work > Tabular Data
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Supervised Learning Methods for Tabular Data
Iris classification  toy example: sepal lengths & widths

Methods That Work > Tabular Data
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Feature Selection
MLXTEND

Sebastian Raschka (2018) MLxtend: Providing machine 
learning and data science utilities and extensions to 
Python’s scientific computing stack.  
The Journal of Open Source Software 3.24.

SequentialFeatureSelector

Raschka, Kuhn, Scott, Li (2018) Computational Drug Discovery and Design: 
Automated Inference of Chemical Group Discriminants of Biological Activity 
from Virtual Screening Data. Springer. ISBN: 978-1-4939-7755-0

Raschka, Liu, Gunturu, Scott, Huertas, Li, and Kuhn (2018) Facilitating the 
Hypothesis-driven Prioritization of Small Molecules in Large Databases: 
Screenlamp and its Application to GPCR Inhibitor Discovery. Journal of 
Computer-Aided Molecular Design, 32(3), 415-433.

Methods That Work > Tabular Data
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Convolutional Neural Networks for Image Data

Image Source: 
twitter.com%2Fcats&psig=AOvVaw30_o-PCM-
K21DiMAJQimQ4&ust=1553887775741551

Image Source: https://www.pinterest.com/pin/
244742560974520446

output

p(y=cat)

Convolutional Neural Networks (CNNs) for Image Classification

Methods That Work > Image Data
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Similarity/
Distance  

Score

x[1]
<latexit sha1_base64="p8Wx+cqqkWj+1zNtDaf7R0Gpalg=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA0ls122y7dbMLuRCyhP8KLB0W8+nu8+W/ctjlo64OBx3szzMwLEykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3Q2q4FIo3UKDk7URzGoWSt8LRzdRvPXJtRKzucZzwIKIDJfqCUbRS6+kh871g0i2V3Yo7A1kmXk7KkKPeLX11ejFLI66QSWqM77kJBhnVKJjkk2InNTyhbEQH3LdU0YibIJudOyGnVumRfqxtKSQz9fdERiNjxlFoOyOKQ7PoTcX/PD/F/lWQCZWkyBWbL+qnkmBMpr+TntCcoRxbQpkW9lbChlRThjahog3BW3x5mTSrFe+8Ur27KNeu8zgKcAwncAYeXEINbqEODWAwgmd4hTcncV6cd+dj3rri5DNH8AfO5w81Jo97</latexit>

x[2]
<latexit sha1_base64="vzgd/QPklE2GpKgvXahAxpOTUdw=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA0ls122i7dbMLuRiyhP8KLB0W8+nu8+W/ctjlo64OBx3szzMwLE8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1Q6pRcIkNw43AdqKQRqHAVji6mfqtR1Sax/LejBMMIjqQvM8ZNVZqPT1kfjWYdEtlt+LOQJaJl5My5Kh3S1+dXszSCKVhgmrte25igowqw5nASbGTakwoG9EB+pZKGqEOstm5E3JqlR7px8qWNGSm/p7IaKT1OAptZ0TNUC96U/E/z09N/yrIuExSg5LNF/VTQUxMpr+THlfIjBhbQpni9lbChlRRZmxCRRuCt/jyMmlWK955pXp3Ua5d53EU4BhO4Aw8uIQa3EIdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx82rI98</latexit>

Image Comparison (e.g., Face Recognition)

Source: MUCT dataset

Methods That Work > Image Data
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Image Synthesis (e.g., Generative Adversarial Network)

Generated
Real /

Generated image

Noise

Discriminator

Generator

Training set

Source: MNIST dataset

Methods That Work > Image Data
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Image source:  
Analysis of deep neural networks 
By Alfredo Canziani, Thomas Molnar, Lukasz Burzawa, Dawood Sheik, Abhishek Chaurasia, Eugenio Culurciello 
https://culurciello.medium.com/analysis-of-deep-neural-networks-dcf398e71aae

Convolutional Neural 
Network Architectures 
(~2019)

Methods That Work > Image Data

https://culurciello.medium.com/analysis-of-deep-neural-networks-dcf398e71aae
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2. Materials and method

The overall strategy of our approach is illustrated in Fig. 2. First,
3D coordinates of the binding pocket and bound ligand pre-
processed by the PDBbind database [37] are transformed into the
3D surface point cloud. Second, obtained 3D dot surfaces are
originated at the center of a bounding box that is large enough to
enclose all training protein-ligand pockets. Third, these surface
point clouds are further rasterized into a digital volumetric repre-
sentation, OctSurf, which is based on the Octree data structure.
Finally, the OctSurf representations are fed into 3D-CNNs archi-
tectures for the protein affinity prediction, e.g., VGG and ResNet, by
restricting the CNN operation on octants of the smallest size. We
also implement the dense voxel version of molecular surface rep-
resentation for the result comparison.

2.1. Datasets

Two major benchmark datasets of protein-ligand complexes,
PDBbind [37] and Comparative Assessment of Scoring Functions
(CASF-2016) [38], are employed here for model construction and
assessment. The PDBbind set (v2018) includes two subsets, the
general set with 11,663 complexes and the refined set with another
4463 complexes. The refined collection was selected based on a few
quality filters regarding experimental binding data or potency, the
crystallography resolution, the inherent nature of the protein-ligand
interaction, etc. The CASF benchmark data, also known as the
PDBbind-v2016 core set, consists of 285 high-quality protein-ligand
complexes sampled from 57 protein targets within the PDBbind
refined set. In this study, those 285 complexes in the core set are held

out as the independent test dataset. We exclude protein complexes
in the test set from the general and refine sets of PDBbind v2018 and
randomly sampled 600 complexes out of the refined set as the
validation set for fine-tuning hyperparameters. The remaining
protein-ligand complexes in both the general and refined sets of
PDBbind v2018 comprise the training set for 3D-CNNmodeling. After
we constructed our predictive models, we also tested them on newly
deposited protein-ligand complexes in the latest version of PDBbind
(v2019), which includes 1146 and 394 extra complexes in updated
general and refined sets respectively. We used the high-quality
refined set of PDBbind v2018 as the reference set to compare the
storage space difference between our proposed OctSurf and the
conventional dense voxel representations.

Similar to the published Pafnucy convolution model [39], we
compute twenty-one atomic features to describe the properties of
each surface point. These twenty-one features indicate the pres-
ence of protein or ligand atoms, their specific atom types (e.g., H, B,
C, N, O, P, S, Se, halogen, metal), related physicochemical categories
(hydrogen bond acceptor or donor, hydrophobic, aromatic, ring),
specific atomic hybridization (e.g., sp1, sp2, and sp3), the connec-
tion valence with heavy atoms and hetero-atoms, partial atomic
charge, and van der Waals atomic radius. In addition, to describe
geometric information of a molecular surface, we calculate the
normal vector of each surface point. Each normal vector of surface
points includes three coordinate directions, which describe the
surface curvatures and shape complementarity between protein
and ligand surfaces. A total of twenty-four features are associated
with each octant and are derived from the averaged feature values
of surface points within this octant, as described in more detail in
Section 2.2.2.

Fig. 1. The sparseness of protein-ligand surfaces in the volumetric representation. An example protein-ligand pocket is orientated in the center of a bounding box with a size of
64 ! 64 ! 64 Å3. As shown in the above figure, the occupancy rate decreases as the resolution increases. The occupancy rate here is defined as the ratio between the number of
occupied voxels and the total number of voxels in the enclosing grid.

Fig. 2. The pipeline of our 3D-CNN implementation for the protein-ligand affinity prediction based on the OctSurf representation. Surface point clouds of binding pockets and
bound ligands are rasterized into the octree-based volumetric representation, OctSurf, which are fed into the 3D-CNNs for binding affinity prediction.

Q. Liu, P.-S. Wang, C. Zhu et al. Journal of Molecular Graphics and Modelling 105 (2021) 107865

3

Liu Q, Wang PS, Zhu C, Gaines BB, Zhu T, Bi J, Song M. OctSurf: Efficient hierarchical voxel-based molecular surface representation 
for protein-ligand affinity prediction. Journal of Molecular Graphics and Modelling. 2021 Jun 1;105:107865. 
https://www.sciencedirect.com/science/article/pii/S1093326321000346

CNNs Also Work for 1D and (here) 3D Data

Methods That Work > Image Data

https://www.sciencedirect.com/science/article/pii/S1093326321000346
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h

y

x

h<t>

y<t>

x<t>

20

Feedforward networks
Recurrent Neural 
Network (RNN)

Time step t

Recurrent edgeImage source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. 
Birmingham, UK: Packt Publishing, 2019  
https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750

Recurrent Neural Networks for Text (and Sequence Data in General)

Methods That Work > Text Data

https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750


Sebastian Raschka, Chan Zuckerberg Initiative -- Seed Networks CompBio 2021 21

Figure based on: 
The Unreasonable Effectiveness of Recurrent Neural Networks by Andrej Karpathy (http://karpathy.github.io/2015/05/21/rnn-effectiveness/) 


many-to-one one-to-many

many-to-many many-to-many

Methods That Work > Text Data

E.g., sentiment

analysis

E.g., image 
captioning

E.g.,

video captioning

E.g.,

language 

translation

RNNs Are Versatile With Respect to Prediction & Generation Tasks

Image source: Sebastian Raschka, Vahid 
Mirjalili. Python Machine Learning. 3rd 
Edition. Birmingham, UK: Packt 
Publishing, 2019  
https://www.packtpub.com/product/
python-machine-learning-third-edition/
9781789955750

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750
https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750
https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750
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Bidirectional Molecule Generation with Recurrent Neural Networks
Francesca Grisoni,* Michael Moret, Robin Lingwood, and Gisbert Schneider*

Cite This: J. Chem. Inf. Model. 2020, 60, 1175−1183 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Recurrent neural networks (RNNs) are able to
generate de novo molecular designs using simplified molecular
input line entry systems (SMILES) string representations of the
chemical structure. RNN-based structure generation is usually
performed unidirectionally, by growing SMILES strings from left
to right. However, there is no natural start or end of a small
molecule, and SMILES strings are intrinsically nonunivocal
representations of molecular graphs. These properties motivate
bidirectional structure generation. Here, bidirectional generative
RNNs for SMILES-based molecule design are introduced. To this
end, two established bidirectional methods were implemented, and
a new method for SMILES string generation and data
augmentation is introducedthe bidirectional molecule design by alternate learning (BIMODAL). These three bidirectional
strategies were compared to the unidirectional forward RNN approach for SMILES string generation, in terms of the (i) novelty, (ii)
scaffold diversity, and (iii) chemical−biological relevance of the computer-generated molecules. The results positively advocate
bidirectional strategies for SMILES-based molecular de novo design, with BIMODAL showing superior results to the unidirectional
forward RNN for most of the criteria in the tested conditions. The code of the methods and the pretrained models can be found at
URL https://github.com/ETHmodlab/BIMODAL.

■ INTRODUCTION
The chemical space of small organic molecules is estimated to
contain 1060 to 10100 chemical structures.1,2 Designing
molecules with desired properties from scratch confronts
chemists with a complex multivariate optimization task.
Computational approaches have proved valuable to generate
novel molecules,3 for example, by extensive structure
enumeration,4,5 inversion of quantitative structure−activity
relationship models,6−8 evolutionary algorithms,9,10 or rule-
based design.11,12 Most of these methods rely on a priori
knowledge, for example, structure−activity relationships,
aggregation rules, chemical transformation rules, fitness
functions, and/or design constraints. Recently, generative
deep learning methodse.g., recurrent neural networks
(RNNs),13,14 adversarial autoencoders15have emerged as
potential alternatives to rule-based de novo molecular design
methods.16−21 Many of these generative machine learning
methods build on text representations of molecules, such as
simplified molecular input line entry systems (SMILES,22

Figure 1a) strings, and directly sample new chemical entities
without the need of explicit design rules, structure−activity
relationship models, or molecular descriptors.
RNNs, in particular, have been applied to computational

molecule generation.21,23−26 In a recent benchmark study,27

SMILES-based RNN with long-short term memory (LSTM)
cells28 resulted the best generative method among a selection of
evolutionary, rule-based, and sequence-based methods (i.e.,

Received: October 9, 2019
Published: January 6, 2020

Figure 1. Overview of the basic concepts of this study. (a) SMILES
strings, obtained from a molecular graph representation, where each
atom is indicated by its element symbol, while branching and
connectivity are indicated by symbols or lowercase letters (e.g., “( )”,
“=” and “c” for branching, double bonds, and aromatic carbons,
respectively). Examples of three SMILES strings representing the drug
ibuprofen are shown; the start atoms used for SMILES string
production are indicated by gray numbers. (b) Simplified scheme of a
forward RNN with one recurrent neuron layer. RNNs model a
dynamic system, in which the network state at any t-th time point
depends both on the current observation (xt) and on the previous state
(at t − 1) and is used to predict the output (yt).

Articlepubs.acs.org/jcim

© 2020 American Chemical Society
1175

https://dx.doi.org/10.1021/acs.jcim.9b00943
J. Chem. Inf. Model. 2020, 60, 1175−1183

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.
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SMILES strings of Ibuprofen

Grisoni F, Moret M, Lingwood R, Schneider G. Bidirectional molecule generation with recurrent neural networks. Journal of Chemical 
Information and Modeling. 2020 Jan 6;60(3):1175-83.

https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00943

RNNs Can Be Used for Predictive and Generative Modeling

Methods That Work > Text Data

https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00943
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Improving generalization

Dataset

Collecting more data

Creating synthetic data
GANs

Classic SMOTE

Data augmentation

Label smoothing

Active learning

Leveraging unlabeled data
Semi-supervised

Self-supervised

Leveraging related data

Multi-task learning

Meta-learning

Transfer learning

Architecture setup

Weight initialization strategies

Activation functions

Bottlenecks for categorical data

Skip connections

Knowledge distillation

Model ensembles

Normalization

Input normalization

BatchNorm and variants

Weight standardization

Gradient centralization

Optimization

Greedy layer-wise training

Adaptive vs non-adaptive 
learning rates

Learning rate schedulers

Auxiliary losses

Gradient clipping

Classic regularization
L2 (/L1) regularization

Early stopping

Ensembles
Bagging

Dropout

Tuning Models to 
Improve Performance

L10.1 Techniques for Reducing Overfitting 
https://youtu.be/KOBmBjlMVAE

Methods That Work > Improving Performance

https://youtu.be/KOBmBjlMVAE
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Academia Vs Industry

Source: Andrej Karpathy, Andrew Ng

Model-Centric Approach

Primary focus is on tuning 
and developing

models to improve 
performance on a fixed 
benchmark set

Data-Centric Approach

Primary focus is on how 
one can improve the 
dataset (collect more, 
select, relabel) to improve 
model performance

Methods That Work > Improving Performance
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What Problem Do You Want To Solve?

Source: Andrew Ng

Human Only Assistance  
by AI

Partial Automation

by AI

Full Automation 
by AI

Shadow  
Mode

Task done by humans

Task done by AI

Keep human in the loop

Methods That Work > Improving Performance
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Figure 1:  A summary overview of the 10 tips for using deep learning in biological research.

In the course of our discussions, several themes became clear: the importance of understanding and
applying machine learning fundamentals as a baseline for utilizing deep learning, the necessity for
extensive model comparisons with careful evaluation, and the need for critical thought in interpreting
results generated by deep learning, among others. The major similarities between deep learning and
traditional computational methods also became apparent. Although deep learning is a distinct
sub�eld of machine learning, it is still a sub�eld. It is subject to the many limitations inherent to
machine learning, and most best practices for machine learning [9,10] also apply to deep learning. As
with all computational methods, deep learning should be applied in a systematic manner that is
reproducible and rigorously tested. Ultimately, the tips we collate range from high-level guidance to
best practices for implementation. It is our hope that they will provide actionable, deep learning-
speci�c instruction for both new and experienced deep learning practitioners. By making deep
learning more accessible for use in biological research, we aim to improve the overall usage and
reporting quality of deep learning in the literature, and to enable increasing numbers of researchers
to utilize these state-of-the art techniques e�ectively and accurately.

Tip 1: Decide whether deep learning is appropriate for your
problem

In recent years, the number of projects and publications implementing deep learning in biology has
risen tremendously [11,12,13]. This trend is likely driven by deep learning’s usefulness across a range
of scienti�c questions and data modalities, and can contribute to the appearance of deep learning as
a panacea for nearly all modeling problems. Indeed, neural networks are universal function
approximators and derive tremendous power from this theoretical capacity to learn any function
[14,15]. However, in reality, deep learning is not suited to every modeling situation and can be
signi�cantly limited by its large demands for data, computing power, programming skill, and modeling
expertise.

Image source: 
Lee BD, Gitter, A, Greene CS, Raschka S, Maguire F, Titus A, Kessler M, Lee AJ et al. Ten Quick Tips for Deep Learning in Biology (under review) 
https://benjamin-lee.github.io/deep-rules/manuscript.pdf

Methods That Work > Improving Performance

https://benjamin-lee.github.io/deep-rules/manuscript.pdf
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Image Source:  
Sebastian Raschka (2018). Model Evaluation, Model Selection, and 
Algorithm Selection in Machine Learning. 
https://arxiv.org/abs/1811.12808

Performance
estimation

Model selection
(hyperparameter optimization)
and performance estimation

Large dataset

▪ 2-way holdout method 
        (train/test split)
▪ Confidence interval via 

        normal approximation

Small dataset

▪ 3-way holdout method
        (train/validation/test split)

▪ (Repeated) k-fold cross-validation
        without independent test set
▪ Leave-one-out cross-validation

        without independent test set
▪ Confidence interval via 

        0.632(+) bootstrap

Model & algorithm 
comparison

▪ Multiple independent 
        training sets + test sets 
        (algorithm comparison, AC)

▪ McNemar test 
        (model comparison, MC)
▪ Cochran’s Q + McNemar test 

(MC)

▪ Combined 5x2cv F test (AC)
▪ Nested cross-validation (AC)

Large dataset

Small dataset

Large dataset

Small dataset

▪ (Repeated) k-fold cross-validation
        with independent test set
▪ Leave-one-out cross-validation

        with independent test set

This work by Sebastian Raschka is licensed under a
Creative Commons Attribution 4.0 International License.

Figure 23: A recommended subset of techniques to be used to address different aspects of model
evaluation in the context of small and large datasets. The abbreviation "MC" stands for "Model
Comparison," and "AC" stands for "Algorithm Comparison," to distinguish these two tasks.

Note that the recommendations I listed in the figure above are suggestions and depend on the problem
at hand. For instance, large test datasets (where "large" is relative but might refer to thousands or
millions of data records), can provide reliable estimates of the generalization performance, whereas
using a single training and test set when only a few data records are available can be problematic for
several reasons discussed throughout Section 2 and Section 3. If the dataset is very small, it might
not be feasible to set aside data for testing, and in such cases, we can use k-fold cross-validation
with a large k or Leave-one-out cross-validation as a workaround for evaluating the generalization
performance. However, using these procedures, we have to bear in mind that we then do not
compare between models but different algorithms that produce different models on the training
folds. Nonetheless, the average performance over the different test folds can serve as an estimate for
the generalization performance (Section 3) discussed the various implications for the bias and the
variance of this estimate as a function of the number of folds).

47

What is the Best/
Recommended Model 
Evaluation Strategy?


It Depends!

AC =  Algorithm comparison

MC = Model comparison
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Active learning

Few-shot learning

Transfer learning

Semi-supervised learning

Self-supervised learning

Pre-train on larger related dataset with labels

Pre-train on unlabeled dataset by creating 
leveraging data structure to create labels

Incorporate unlabeled data into the training

Optimize data order and labeling

Special cases with very few examples 
per class (incl. transfer learning, metric learning, 
semi-supervised, meta-learning)

Tackling Small Data Problems
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Ordinal Data: Integrating Label Order Info

• Ranking: Predict Correct order 
(0 loss if order is correct, e.g., rank a collection of movies by "goodness")

• Ordinal regression: Predict correct (ordered) label 
(E.g., age of a person in years; here, regard aging as a non-stationary process)

Excerpt from the UTKFace dataset 
https://susanqq.github.io/UTKFace/

18 29 41

≻ ≻

≻ ≻

Cao, Mirjalili, Raschka (2020)  
Rank Consistent Ordinal Regression for Neural Networks with Application to Age 
Estimation  
Pattern Recognition Letters. 140, 325-331 
https://www.sciencedirect.com/science/article/pii/S016786552030413X

https://susanqq.github.io/UTKFace/
https://www.sciencedirect.com/science/article/pii/S016786552030413X
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Phantom of the ADAS:
Phantom Attacks on Driver-Assistance Systems

Ben Nassi1, Dudi Nassi1, Raz Ben-Netanel1, Yisroel Mirsky1,2, Oleg Drokin3, Yuval Elovici1

Video Demonstration - https://youtu.be/1cSw4fXYqWI
{nassib,nassid,razx,yisroel,elovici}@post.bgu.ac.il, green@linuxhacker.ru

1 Ben-Gurion University of the Negev, 2 Georgia Tech,3 Independent Tesla Researcher

ABSTRACT

The absence of deployed vehicular communication sys-
tems, which prevents the advanced driving assistance systems
(ADASs) and autopilots of semi/fully autonomous cars to
validate their virtual perception regarding the physical en-
vironment surrounding the car with a third party, has been
exploited in various attacks suggested by researchers. Since
the application of these attacks comes with a cost (exposure
of the attacker’s identity), the delicate exposure vs. application
balance has held, and attacks of this kind have not yet
been encountered in the wild. In this paper, we investigate a
new perceptual challenge that causes the ADASs and autopi-
lots of semi/fully autonomous to consider depthless objects
(phantoms) as real. We show how attackers can exploit this
perceptual challenge to apply phantom attacks and change
the abovementioned balance, without the need to physically
approach the attack scene, by projecting a phantom via a
drone equipped with a portable projector or by presenting a
phantom on a hacked digital billboard that faces the Internet
and is located near roads. We show that the car industry has
not considered this type of attack by demonstrating the attack
on today’s most advanced ADAS and autopilot technologies:
Mobileye 630 PRO and the Tesla Model X, HW 2.5; our
experiments show that when presented with various phantoms,
a car’s ADAS or autopilot considers the phantoms as real
objects, causing these systems to trigger the brakes, steer into
the lane of oncoming traffic, and issue notifications about
fake road signs. In order to mitigate this attack, we present
a model that analyzes a detected object’s context, surface,
and reflected light, which is capable of detecting phantoms
with 0.99 AUC. Finally, we explain why the deployment
of vehicular communication systems might reduce attackers’
opportunities to apply phantom attacks but won’t eliminate
them.

I. INTRODUCTION

After years of research and development, automobile tech-
nology is rapidly approaching the point at which human
drivers can be replaced, as cars are now capable of supporting
semi/fully autonomous driving [1, 2]. While the deployment
of semi/fully autonomous cars has already begun in many
countries around the world, the deployment of vehicular
communication systems [3], a set of protocols intended for

a b

Fig. 1: Perceptual Challenge: Would you consider the projec-
tion of the person (a) and road sign (b) real? Telsa considers
(a) a real person and Mobileye 630 PRO considers (b) a real
road sign.

exchanging information between vehicles and roadside units,
has been delayed [4]. The eventual deployment of such sys-
tems, which include V2V (vehicle-to-vehicle), V2I (vehicle-to-
infrastructure), V2P (vehicle-to-pedestrian), and V2X (vehicle-
to-everything) communication systems, is intended to supply
semi/fully autonomous cars with information and validation
regarding lanes, road signs, and obstacles.

Given the delayed deployment of vehicular communication
systems in most places around the world, autonomous driving
largely relies on sensor fusion to replace human drivers.
Passive and active sensors are used in order to create 360�

3D virtual perception of the physical environment surrounding
the car. However, the lack of vehicular communication system
deployment has created a validation gap which limits the
ability of semi/fully autonomous cars to validate their virtual
perception of obstacles and lane markings with a third party,
requiring them to rely solely on their sensors and validate one
sensor’s measurements with another. Given that the exploita-
tion of this gap threatens the security of semi/fully autonomous
cars, we ask the following question: Why haven’t attacks
against semi/fully autonomous cars exploiting this validation
gap been encountered in the wild?

Various attacks have already been demonstrated by re-
searchers [5–14], causing cars to misclassify road signs [5–10],
misperceive objects [11, 12], deviate to the lane of oncoming
traffic [13], and navigate in the wrong direction [14]. These
attacks can only be applied by skilled attackers (e.g., an expert

Nassi, Mirsky, Nassi, Ben-Netanel, Drokin, Elovici. Phantom of the 
ADAS: Securing Advanced Driver-Assistance Systems from Split-
Second Phantom Attacks. ACM SIGSAC Conference on Computer 
and Communications Security, 2020 
https://eprint.iacr.org/2020/085.pdf

Tesla Autopilot considers (a) as a real person and 
(b) as a real road sign

Beyond Pandas & Gibbons: Real-World Adversarial Attacks

Challenges > Adversarial Attacks

Duan, Mao, Qin, Yang, Chen, Ye, He. Adversarial Laser Beam: 
Effective Physical-World Attack to DNNs in a Blink. 
arXiv:2103.06504. 2021 Mar 11. 
https://arxiv.org/abs/2103.06504

Adversarial Laser Beam: Effective Physical-World Attack to DNNs in a Blink

Ranjie Duan1† Xiaofeng Mao2 A. K. Qin1 Yun Yang1 Yuefeng Chen2 Shaokai Ye3 Yuan He2

1Swinburne University of Technology 2Alibaba Group
3EPFL

Abstract

Though it is well known that the performance of deep
neural networks (DNNs) degrades under certain light con-
ditions, there exists no study on the threats of light beams
emitted from some physical source as adversarial attacker
on DNNs in a real-world scenario. In this work, we show
by simply using a laser beam that DNNs are easily fooled.
To this end, we propose a novel attack method called Adver-
sarial Laser Beam (AdvLB), which enables manipulation
of laser beam’s physical parameters to perform adversar-
ial attack. Experiments demonstrate the effectiveness of our
proposed approach in both digital- and physical-settings.
We further empirically analyze the evaluation results and
reveal that the proposed laser beam attack may lead to some
interesting prediction errors of the state-of-the-art DNNs.
We envisage that the proposed AdvLB method enriches the
current family of adversarial attacks and builds the founda-
tion for future robustness studies for light.

1. Introduction

Natural phenomena may play the role of adversarial at-
tackers, e.g. a blinding glare results in a fatal crash of a
Tesla self-driving car. What if a beam of light can adver-
sarially attack a DNN? Further, how about using a beam
of light, specifically the laser beam, as the weapon to per-
form attacks. If we can do that, with the fastest speed in the
world, the laser beam could achieve the fastest attack with
no doubts. As shown in Figure 1, by using an off-the-shelf
lighting device such as a laser pointer, the attacker can ma-
liciously shoot a laser beam onto the target object to make
the self-driving car fail to recognize target objects correctly.

We regard the attack illustrated in Figure 1 as a new
type of adversarial attack, which is crucial but not yet ex-
ploited. Up to now, most researchers study the security of
DNNs by exploring various adversarial attacks in digital-
settings, where input images are added with deliberately

†Works done when intern at Alibaba
‡Code is available at https://github.com/RjDuan/Advlight

Figure 1: An example. When the camera of self-driving
car captures object shot by the laser beam, it recognizes
”trolleybus” as ”amphibian” and ”street sign” as ”soap dis-
penser”.

crafted perturbations and then fed to the target DNN model
[23, 10, 6, 3, 18]. However, in physical-world scenarios,
images are typically captured by cameras and then directly
fed to the target models, where attackers cannot directly ma-
nipulate the input image. Some recent efforts in developing
physical-world attacks are addressed in [21, 8, 2, 7, 14].
The physical-world adversarial examples typically require
large perturbations, because small perturbations are hard
to be captured by cameras. In addition, the attacking ef-
fects of adversarial examples of small perturbations can be
easily mitigated in complex physical-world environments
[21, 9, 7]. Meanwhile, physical-world adversarial exam-
ples require high stealthiness to avoid being discovered by
either the victim or defender before performing an attack
successfully. Thus for creating physical-world adversarial
examples, there is always a compromise between stealthi-
ness and adversarial strength.

Most existing physical-world attacks adopt a ”sticker-
pasting” setting, i.e., the attacker prints adversarial pertur-
bation as a sticker and then pastes it onto the target ob-
ject [16, 2, 7, 8]. These attacks achieve the stealthiness of
adversaries with extra efforts of designing adversarial per-
turbation or camouflaging adversarial images and finding
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Laser beams turn buses into amphibians and 
street signs into soap dispensers

https://eprint.iacr.org/2020/085.pdf
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Table 1. Selection of evasion attack and defense mechanisms that are implemented in adversarial
learning toolkits. Note that ART also implements methods for poisoning and extraction attacks (not
shown).

Cleverhans v3.0.1 FoolBox v2.3.0 ART v1.1.0 DEEPSEC (2019) AdvBox v0.4.1
Supported frameworks

TensorFlow yes yes yes no yes
MXNet yes yes yes no yes

PyTorch no yes yes yes yes
PaddlePaddle no no no no yes

(Evasion) attack mechanisms
BLB [163] yes no no yes no

AMD [170] yes no no no no
ZOO [171] no no yes no no

VA [172] yes yes yes no no
AP [173] no no yes no no

STA [174] no yes yes no no
DTA [175] no no yes no no

FGSM [176] yes yes yes yes yes
R+FGSM [177] no no no yes no

R+LLC [177] no no no yes no
U-MI-FGSM [178] yes yes no yes no
T-MI-FGSM [178] yes yes no yes no

BIM [179] no yes yes yes yes
LLC / ILLC [179] no yes no yes no

UAP [180] no no yes yes no
DeepFool [181] yes yes yes yes yes

NewtonFool [182] no yes yes no no
JSMA [183] yes yes yes yes yes

CW/CW2 [184] yes yes yes yes yes
PGD [185] yes no yes yes yes
OM [186] no no no yes no

EAD [187] yes yes yes yes no
Boundary Attack [188] no yes yes no no

HopSkipJumpAttack [189] yes yes yes no no
MaxConf [190] yes no no no no

Inversion attack [191] yes yes no no no
SparseL1 [192] yes yes no no no

SPSA [193] yes no no no no
HCLU [194] no no yes no no

ADef [195] no yes no no no
DDNL2 [196] no yes no no no

Local Search [197] no yes no no no
Pointwise attack [198] no yes no no no

GenAttack [199] no yes no no no
Defense mechanisms

Feature Squeezing [200] no no yes no yes
Spatial Smoothing [200] no no yes no yes

Label Smoothing [200] no no yes no yes
Gaussian Augmentation [201] no no yes no yes

Adversarial Training [185] no no yes yes yes
Thermometer Encoding [202] no no yes yes yes

NAT [203] no no no yes no
EAT [177] no no no yes no
DD [204] no no no yes no
IGR [205] no no no yes no
EIT [206] no no yes yes no
RT [207] no no no yes no

PixelDefend [208] no no yes yes no
Regr.-based classfication [209] no no no yes no

JPEG compression [210] no no yes no no

8. Conclusions1137

This article reviewed some of the most notable advances in machine learning, data science, and1138

scientific computing. It provided a brief background into major topics, while investigating the various1139

challenges and current state of solutions for each. There are several more specialized application and1140

research areas that are outside the scope of this article. For example, attention-based Transformer1141
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Raschka S, Patterson J, Nolet C. Machine learning in python: Main developments 
and technology trends in data science, machine learning, and artificial 
intelligence. Information. 2020 Apr;11(4):193.

https://www.mdpi.com/2078-2489/11/4/193

Some Common Adversarial Attacks & Defenses
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Common approach: Address lack of diversity in datasets.  
--> provide algorithms with datasets that represent all groups equally and fairly


Does it work? Only for a stereotypical sense of fairness according to  
Zaid Khan:  
     "The people in the images appeared to fit racial stereotypes.  
       For example, an algorithm was more likely to label an individual in an image    
       as 'white' if that person had blond hair."


https://news.northeastern.edu/2021/02/22/humans-are-trying-to-take-bias-out-of-facial-recognition-programs-its-not-working-yet/

Paper:  
Khan Z, Fu Y.  
One Label, One Billion Faces: Usage and Consistency of Racial Categories in Computer Vision.  
ACM Conference on Fairness, Accountability, and Transparency 2021 Mar 3 
https://dl.acm.org/doi/abs/10.1145/3442188.3445920

Challenges > Bias

https://news.northeastern.edu/2021/02/22/humans-are-trying-to-take-bias-out-of-facial-recognition-programs-its-not-working-yet/
https://dl.acm.org/doi/abs/10.1145/3442188.3445920
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An Investigation of Critical Issues in Bias Mitigation Techniques

Robik Shrestha1 Kushal Kafle2 Christopher Kanan1,3,4

1Rochester Institute of Technology 2Adobe Research 3Paige 4Cornell Tech
1{rss9369, kanan}@rit.edu 2{kkafle}@adobe.com

Abstract

A critical problem in deep learning is that systems learn
inappropriate biases, resulting in their inability to perform
well on minority groups. This has led to the creation of mul-
tiple algorithms that endeavor to mitigate bias. However, it
is not clear how effective these methods are. This is because
study protocols differ among papers, systems are tested on
datasets that fail to test many forms of bias, and systems
have access to hidden knowledge or are tuned specifically to
the test set. To address this, we introduce an improved evalu-
ation protocol, sensible metrics, and a new dataset, which
enables us to ask and answer critical questions about bias
mitigation algorithms. We evaluate seven state-of-the-art
algorithms using the same network architecture and hyper-
parameter selection policy across three benchmark datasets.
We introduce a new dataset called Biased MNIST that en-
ables assessment of robustness to multiple bias sources. We
use Biased MNIST and a visual question answering (VQA)
benchmark to assess robustness to hidden biases. Rather
than only tuning to the test set distribution, we study robust-
ness across different tuning distributions, which is critical
because for many applications the test distribution may not
be known during development. We find that algorithms ex-
ploit hidden biases, are unable to scale to multiple forms
of bias, and are highly sensitive to the choice of tuning set.
Based on our findings, we implore the community to adopt
more rigorous assessment of future bias mitigation methods.
All data, code, and results are publicly available1.

1. Introduction
Deep learning systems are trained to minimize their loss

on a training dataset. However, datasets often contain spuri-
ous correlations and hidden biases which result in systems
that have low loss on the training data distribution, but then
fail to work appropriately on minority groups because they
exploit and even amplify these spurious correlations [71, 36].
For example, in systems trained to infer hair color on the

1https://github.com/erobic/bias-mitigators

What is the brown animal?

Colored

MNIST

CelebA

GQA-OOD

Ease of
Analysis

Difficulty of 
Biases

Biased MNIST 

(ours)

Figure 1: Current bias mitigation systems are tested on simple
datasets that are easy to analyze, but do not offer challenges present
in realistic cases. Addressing this, we propose the Biased MNIST
dataset which is easy to analyze, yet is reflective of real world
challenges since it contains multiple sources of biases. We also test
on GQA-OOD, where the sources of biases are not very obvious.

CelebA dataset [43], the majority group of non-blond males
occurs 50 times more than the minority group of blond males,
resulting in systems incorrectly predicting non-blond as hair
color for the minority group. While this is a toy problem,
in the real world, hidden minority patterns are common and
failing on them can have dire consequences. Systems de-
signed to aid human resources, help with medical diagnosis,
determine probation, or loan qualification could be biased
against minority groups based on age, gender, religion, sex-
ual orientation, ethnicity, or race [54, 8, 17, 14, 48]. Systems
can exploit correlated variables even if they are not directly a
part of the input e.g., through inferred zip codes [22], failing
to work effectively on minority groups.

Recently, many methods have been proposed to make neu-
ral networks bias resistant. These methods can be grouped
into two types: 1) those that assume the bias variables e.g.,
the gender label in CelebA, are explicitly annotated and can
be accessed during training [55, 55, 69, 38] and, 2) those
that do not require explicit access [46, 50]. Assuming ex-
plicit access requires extra annotations in addition to the
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• Learning inappropriate biases can cause 
DL models to perform badly on minority 
groups


• Several methods were developed to 
address this, but do they work?


• Here: 


‣ Improved evaluation protocol & 
dataset


‣ Evaluation of 7 methods


‣ Biased MNIST dataset


• Code and data: https://github.com/
erobic/bias-mitigators
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Table 1: Unbiased accuracies Acc(↵ = 0) on all datasets for
all methods. We format the first, second and third best results.
Methods that do not access explicit biases have gray background.

Methods/
Datasets CelebA Biased MNIST GQA

StdM 80.3 42.0 44.8
Up Wt [56] 87.4 30.1 30.0
GDRO [55] 88.5 27.2 26.4
RUBi [13] 87.2 38.9 24.1
LNL [38] 79.2 40.6 28.6
IRMv1 [5] 79.8 38.7 39.3
LFF [46] 77.8 56.6 45.1
SD [50] 88.6 41.3 46.9

6.1. Head-to-Head Comparisons
Question 1: Are there clear winners in a head-to-head

comparisons across datasets?
We first compute the unbiased accuracies for all eight

methods on all three datasets in Table. 1. We first train
explicit methods on CelebA, using class and gender labels
as explicit biases. For Biased MNIST, there are multiple
ways to define explicit biases, but for this section, we simply
use each of the seven variables as explicit biases in different
runs and average across the runs. We study combinations of
multiple explicit variables in Sec. 6.3. We set pbias = 0.7
for this section, and present results across different pbias in
the Appendix. Similarly for GQA, we consider each of the
four variables as explicit bias in separate runs and present
the average.

Results. As shown in Table. 1, no method performs
universally well across datasets; however, the implicit meth-
ods LFF and SD obtain high unbiased accuracies on most
datasets. This shows that implicit methods can deal with
multiple bias sources without explicit access. Explicit meth-
ods work well on CelebA but fail on Biased MNIST and
GQA. Specifically, Up Wt, GDRO and RUBi obtain 7-8%
improvements over StdM on CelebA, which requires gen-
eralization to only 4 groups. However, all explicit methods
perform worse than StdM on Biased MNIST and GQA, sig-
nifying their inability to deal with multiple bias sources.
LNL and IRMv1 were comparable to StdM even on CelebA,
demonstrating lack of generalization even on simple set-
tings. Despite being a simpler method, Up Wt outperformed
GDRO on both Biased MNIST and GQA, but both were
worse than StdM. These results show that implicit methods
can outperform explicit methods.

6.2. Bias Exploitation
Question 2: Do methods show robustness to both explicit

and implicit biases?
In this set of experiments, we study the exploitation of

(a)

(b)

Figure 3: Boxplots of differences between majority and minority
groups (MMD) on Biased MNIST over: a) bias variables and b)
different methods.

explicit and implicit bias. We primarily focus on the Biased
MNIST dataset. Specifically, we reserve each individual
variable as the explicit bias in separate experiments, while
treating the remaining six as implicit biases. As shown
in Fig. 3, the majority minority differences (MMD) across
explicit and implicit biases help us diagnose bias exploitation.
We also analyze per-group accuracies on CelebA, to examine
behavior in a simpler setting.

Results. As shown in Fig. 3a, we find that methods tend
to latch onto all sources of implicit bias, with the exception
of digit position. As shown in Fig. 3b, some explicit methods
attempt to mitigate the explicit bias to an extent, with Up Wt,
GDRO and RUBi obtaining lower MMD values for explicit
variables in comparison to implicit variables. However, de-
spite the decrease in MMD for explicit variables, the poor
results in Table. 1 and high MMD values for implicit vari-
ables in Fig. 3a suggest that the overall generalization is still
worsened due to implicit biases. We explore if explicit meth-
ods generalize if all bias sources are explicitly specified in
Sec. 6.3. Among the implicit methods, LFF, which obtained
the best unbiased accuracy on Biased MNIST also shows the
lowest MMD, further indicating its ability to deal with mul-
tiple sources of bias. Also, we observe large inconsistencies
in the variables exploited across the methods. Even different
runs of the same method with the same hyperparameters

Challenges > Bias
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Why Are Graph Neural Nets Interesting?

Sebastian Raschka and Benjamin Kaufman (2020) 
Machine Learning and AI-based Approaches for Bioactive Ligand Discovery and GPCR-ligand Recognition  
Elsevier Methods, 180, 89–110 
https://www.sciencedirect.com/science/article/pii/S1046202319302762

representation for the ligand structure, and highlight recently devel-
oped deep learning methods that use these representations. Next, we
discuss the latest trends for ligand-based analysis, from molecular
property prediction to similarity-based virtual screening. While the li-
gand-based approaches assume that a high-quality receptor structure is
not available, the next section reviews the recent developments for
receptor structure-based bioactive ligand discovery. We then explore
advances in de novo small-molecule design. Finally, this review con-
cludes by motivating the use of transfer learning, which allow re-
searchers to make better use of publicly available data in machine
learning and AI-based bioactive ligand discovery.

2. Molecular feature representations

Machine learning methods excel at prediction tasks across multiple
disciplines but require careful data preparation as most methods are
designed to operate on tabular datasets. The standard data input format
is the so-called design matrix, where each row represents a new training
example, and the columns correspond to the different feature variables,
as illustrated in the example in Fig. 2. A common challenge in con-
ventional machine learning is how to prepare datasets as input to ma-
chine learning algorithms – in practice, machine learning practitioners
have to find a sweet spot between reducing the dimensionality and
retaining salient information that the model can learn from. In contrast
to conventional machine learning, deep learning excels at learning from
raw data, such as images and text, directly, as previously discussed in
Section 1.7. However, molecular data, such as conformations of small
molecules and receptors, can be challenging to represent in a standard
format that most machine learning and deep learning methods have
been designed for. Even if the same information can be extracted from
two different data representations, an algorithm may be more effective
at extracting that information from one over the other. There is no clear
best representation of molecules for machine learning methods and
indeed certain representations may be better for certain tasks. The
following section provides a brief overview of commonly used mole-
cular representations as well as some recent applications of them using
AI-based methods.

2.1. Property-based feature vectors

A molecular descriptor is the transformation of chemical informa-
tion into a numeric value [107]. Dragon [108] and Mordred descriptors
[109] are examples of sets of molecular descriptors. As an alternative to

molecular descriptors, molecular fingerprints encode molecular struc-
ture in a vector format, a so-called bit vector consisting of 1’s and 0’s.
When used as input for machine learning models, both molecular fin-
gerprints and descriptors have historically produced state-of-the-art
results on chemical machine learning tasks such as chemical odor
prediction and bioactivity [41,110].

The extended connectivity fingerprint (ECFP) is among the most
widely-used 2D fingerprint methods [111], and we use its generation
procedure as an example of the general process for generating tradi-
tional molecular fingerprints. A fingerprint is generated by a multistep
process in which each atom is associated with a series of integers. In this
series the kth integer encodes information about the atom it is asso-
ciated with as well as information about the atoms and bonds within k
bonds of that atom – that is, the substructure of the compound that is
within k bonds of the atom. Next, the integers associated with each
atom are concatenated into an array format, which is then processed via
a hashing algorithm to generate a bit vector of a desired length (typi-
cally 1024 or 2048 elements). This method captures information about
all identified substructures in a compound, resulting in a fixed-length
vector regardless of the input compound’s size. ECFPs do not explicitly
encode the 3D spatial information of a compound; however, specialized
fingerprint methods have recently been developed that incorporate 3D-
structural information [112]. Lastly, there are also fingerprints that can
encode protein–ligand interactions [113].

2.2. SMILES

Simplified molecular-input line-entry system (SMILES) strings are
ASCII string representations of compounds (Fig. 7 A), which are gen-
erated according to a procedure that guarantees a unique mapping from
a SMILES string to a compound structure (though not the inverse)
[114]. One benefit of SMILES strings over 2D molecular fingerprints
like ECFP is that they encode stereochemistry explicitly. One downside
for machine learning is that SMILES do not have a fixed-length; how-
ever, certain deep learning architectures designed for processing text
documents, like RNNs or 1D CNNs, can handle variable-length inputs.

Recently, Hirohara et al. [115] proposed a novel molecular re-
presentation scheme by converting SMILES strings into “SMILES feature
matrices,” which were used as inputs into a 1D CNN [115]. A SMILES
feature matrix was constructed by mapping a SMILES string of length N
to a ×N 42 matrix, where the kth row represents the kth character
(corresponding to either atom or connectivity information) of the
string, and the 42 columns correspond to properties of that character.

Fig. 7. Summary of commonly used molecular
representation methods based on the example of
Aspirin (shown in the center). (A) A molecular
fingerprint encodes structural motifs into a
sparse bit vector. (B) A SMILES string encoding
structural information of the molecule as well as
its stereochemistry. (C) A visualization of the 3D
voxelization concept. Note that information
about which atoms occupy which voxels would
be encoded in a 4th dimension which is omitted
in this visualization. (D) Illustration of how in-
formation is passed to an atom in a simple graph
neural network. Note that the graph-structural
information will be passed from more distant
atoms when the summation is repeated (not
shown).
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https://github.com/rusty1s/pytorch_geometric

Recent Trends > Graph Neural Nets

As of this writing: 82 graph neural net methods already implemented

https://github.com/rusty1s/pytorch_geometric
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Self-Supervised Learning

Leverage structure of data to create labels for supervised learning,

to utilize large amounts of unlabeled data

1. Create labels (pre-text task) by leveraging structure of the data


2. Pre-train in self-supervised fashion to learn embeddings


3. Fine-tune in transfer learning fashion

Recent Trends > Self-Supervised Learning

"Assisted Label Learning"
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Classic Self-Supervised Learning Example

Image source: https://sebastianraschka.com/blog/2020/intro-to-dl-ch01.html


Based on: Doersch, C., Gupta, A., & Efros, A. A.. Unsupervised visual representation learning by context prediction. CVPR 2015

https://arxiv.org/abs/1505.05192

Recent Trends > Self-Supervised Learning

https://sebastianraschka.com/blog/2020/intro-to-dl-ch01.html
https://arxiv.org/abs/1505.05192
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1. Run original and distorted image through same 
network


2. Compute correlation matrix


3. Add objective to make correlation matrix close to 
identity matrix

Forces representation vectors of similar samples to be similar

Barlow Twins: Self-Supervised Learning via Redundancy Reduction

Jure Zbontar
* 1

Li Jing
* 1

Ishan Misra
1

Yann LeCun
1 2

Stéphane Deny
1

Abstract

Self-supervised learning (SSL) is rapidly closing
the gap with supervised methods on large com-
puter vision benchmarks. A successful approach
to SSL is to learn representations which are invari-
ant to distortions of the input sample. However, a
recurring issue with this approach is the existence
of trivial constant representations. Most current
methods avoid such collapsed solutions by careful
implementation details. We propose an objective
function that naturally avoids such collapse by
measuring the cross-correlation matrix between
the outputs of two identical networks fed with dis-
torted versions of a sample, and making it as close
to the identity matrix as possible. This causes the
representation vectors of distorted versions of a
sample to be similar, while minimizing the redun-
dancy between the components of these vectors.
The method is called BARLOW TWINS, owing to
neuroscientist H. Barlow’s redundancy-reduction
principle applied to a pair of identical networks.
BARLOW TWINS does not require large batches
nor asymmetry between the network twins such
as a predictor network, gradient stopping, or a
moving average on the weight updates. It allows
the use of very high-dimensional output vectors.
BARLOW TWINS outperforms previous methods
on ImageNet for semi-supervised classification in
the low-data regime, and is on par with current
state of the art for ImageNet classification with
a linear classifier head, and for transfer tasks of
classification and object detection. 1

1. Introduction

Self-supervised learning aims to learn useful representa-
tions of the input data without relying on human annota-

*Equal contribution 1Facebook AI Research 2New York
University, NY, USA. Correspondence to: Jure Zbon-
tar <jzb@fb.com>, Li Jing <ljng@fb.com>, Ishan Misra
<imisra@fb.com>, Yann LeCun <yann@fb.com>, Stéphane
Deny <stephane.deny.pro@gmail.com>.

1Code and pre-trained models (in PyTorch) coming soon at
https://github.com/facebookresearch/barlowtwins

Figure 1. BARLOW TWINS’s objective function measures the cross-
correlation matrix between the output features of two identical net-
works fed with distorted versions of a batch of samples, and tries
to make this matrix close to the identity. This causes the represen-
tation vectors of distorted versions of a sample to be similar, while
minimizing the redundancy between the components of these vec-
tors. BARLOW TWINS is competitive with state-of-the-art methods
for self-supervised learning while being conceptually simpler, nat-
urally avoiding trivial constant (i.e. collapsed representations), and
being robust to the training batch size.

tions. Recent advances in self-supervised learning for visual
data (Caron et al., 2020; Chen et al., 2020a; Grill et al., 2020;
He et al., 2019; Misra & van der Maaten, 2019) show that
it is possible to learn self-supervised representations that
are competitive with supervised representations. A common
underlying theme that unites these methods is that they all
aim to learn representations that are invariant under different
distortions (also referred to as ‘data augmentations’). This
is typically achieved by maximizing similarity of representa-
tions obtained from different distorted versions of a sample
using a variant of Siamese networks (Hadsell et al., 2006).
As there are trivial solutions to this problem, like a constant
representation, these methods rely on different mechanisms
to learn useful representations.

Contrastive methods like SIMCLR (Chen et al., 2020a) de-
fine ‘positive’ and ‘negative’ sample pairs which are treated
differently in the loss function. Additionally, they can also
use asymmetric learning updates wherein momentum en-
coders (He et al., 2019) are updated separately from the
main network. Clustering methods use one distorted sample
to compute ‘targets’ for the loss, and another distorted ver-
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• SEER = SElf-supERvised


• new billion-parameter self-supervised computer vision model


• pretraining on a billion random, unlabeled and uncurated public Instagram images


• self-supervised SOTA: reaching 84.2 percent top-1 accuracy on ImageNet


• SwAV (https://arxiv.org/abs/2006.09882) uses online clustering to rapidly group images 
with similar visual concepts and leverage their similarities (doesn't need pair-wise 
comparisons; fast)

Goyal, Caron, Lefaudeux, Xu, Wang, Pai, Singh, Liptchinsky, Misra, Joulin, 
Bojanowski. Self-supervised Pretraining of Visual Features in the Wild. 
arXiv:2103.01988, 2021 Mar 2.

Recent Trends > Self-Supervised Learning
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https://arxiv.org/abs/2006.09882
https://arxiv.org/abs/2103.01988


Sebastian Raschka, Chan Zuckerberg Initiative -- Seed Networks CompBio 2021 45

A quick brown    fox      jumps over the lazy dog

A quick brown [MASK] jumps over the lazy dog

Input sentence:

15% randomly masked:

BERT

Self-Supervised Learning (Text Example)

Recent Trends > Self-Supervised Learning

Possible classes

(all words)

zoo

ant
...

...
fox11%

...

0.01%
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Patterns Emerge When Training on Large Amounts of Unlabeled Amino Acid 
Sequence Data in Self-Supervised Fashion

Elnaggar A, Heinzinger M, Dallago C, Rihawi G, Wang Y, Jones L, Gibbs T, Feher T, Angerer C, Bhowmik D, Rost B. ProtTrans: Towards Cracking the 
Language of Life's Code Through Self-Supervised Deep Learning and High Performance Computing. arXiv preprint 2020 Jul 13. 
https://arxiv.org/abs/2007.06225
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D Structure: SCOPe
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E Lineage: Kingdoms
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Fig. 6: Unsupervised training captures various features of proteins: We used t-SNE projections to assess which
features the LMs trained here learnt to extract from proteins. Exemplarily for ProtBert-BFD, the best-performing model
on supervised tasks, we showed that the protein LMs trained here captured biophysical- and biochemical properties of single
amino acids during pre-training (Panel A). A redundancy reduced version (30%) of the DeepLoc [26] dataset was used to assess
whether the LM learnt to classify proteins into membrane-bound and water-soluble (Panel B) or according to their cellular
compartment (Panel C). Not all proteins in the set had annotations for both features, making Panels B and C not directly
comparable. Further, a redundancy reduced version (40%) of the Structural Classification of Proteins – extended (SCOPe)
database was used to assess whether ProtBert-BFD captured structural (Panel D), functional (Panel F) or lineage-specific
(Panel E) features of proteins without any labels. Towards this end, contextualized, fixed-size representations were generated
for all proteins in both datasets by mean-pooling over the representations extracted from the last layer of ProtBert-BFD
(average over the length of the protein). The high-dimensional embeddings were projected to 2D using t-SNE. ProtBert-BFD
captured protein information on di�erent levels: ranging from structural features as annotated in the main classes in SCOPe,
over functional aspects as defined by in the Enzyme Commission (E.C.) numbers or the cellular compartment to the branch
of the protein within the tree of life, without ever having been explicitly trained on any of these features. Comparing di�erent
features for the same datasets revealed that potentially heterogeneous clusters are only formed due to the multi-modal nature
of proteins, e.g. the eukaryotic proteins are well separated from bacterial proteins (Panel E) but form internally multiple
sub-clusters in structure space (Panel D).
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Fig. 6: Unsupervised training captures various features of proteins: We used t-SNE projections to assess which
features the LMs trained here learnt to extract from proteins. Exemplarily for ProtBert-BFD, the best-performing model
on supervised tasks, we showed that the protein LMs trained here captured biophysical- and biochemical properties of single
amino acids during pre-training (Panel A). A redundancy reduced version (30%) of the DeepLoc [26] dataset was used to assess
whether the LM learnt to classify proteins into membrane-bound and water-soluble (Panel B) or according to their cellular
compartment (Panel C). Not all proteins in the set had annotations for both features, making Panels B and C not directly
comparable. Further, a redundancy reduced version (40%) of the Structural Classification of Proteins – extended (SCOPe)
database was used to assess whether ProtBert-BFD captured structural (Panel D), functional (Panel F) or lineage-specific
(Panel E) features of proteins without any labels. Towards this end, contextualized, fixed-size representations were generated
for all proteins in both datasets by mean-pooling over the representations extracted from the last layer of ProtBert-BFD
(average over the length of the protein). The high-dimensional embeddings were projected to 2D using t-SNE. ProtBert-BFD
captured protein information on di�erent levels: ranging from structural features as annotated in the main classes in SCOPe,
over functional aspects as defined by in the Enzyme Commission (E.C.) numbers or the cellular compartment to the branch
of the protein within the tree of life, without ever having been explicitly trained on any of these features. Comparing di�erent
features for the same datasets revealed that potentially heterogeneous clusters are only formed due to the multi-modal nature
of proteins, e.g. the eukaryotic proteins are well separated from bacterial proteins (Panel E) but form internally multiple
sub-clusters in structure space (Panel D).
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Image Source: https://medium.com/huggingface/distilbert-8cf3380435b5
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"Old" Language Transformer Models
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• $2.5k - $50k (110 million parameter model) 

• $10k - $200k (340 million parameter model) 

• $80k - $1.6m (1.5 billion parameter model)

Costs: Not for the faint hearted

http://arxiv.org/abs/2004.08900
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Efficient Transformers: A Survey
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Figure 2: Taxonomy of E�cient Transformer Architectures.

decoding is required when designing e�cient self-attention mechanisms since it can be a
limiting factor in many applications.

3. A Survey of E�cient Transformer Models

In this section, we provide a high-level overview of e�cient Transformer models. We begin
by presenting a characterization of the di↵erent models. Table 1 lists the e�cient Trans-
formers released to date while Figure 2 presents a graphical overview of several key e�cient
Transformer models.

3.1 A Taxonomy of E�cient Transformers

This section outlines a general taxonomy of e�cient Transformer models, charactered by
their core techniques and primary use case. The primary goal of most of these models, with
the exception of those based on segment-based recurrence, is to approximate the quadratic-
cost attention matrix. Each method applies some notion of sparsity to the otherwise dense
attention mechanism.

5

Tay, Dehghani, Bahri, Metzler. Efficient Transformers: A Survey. arXiv:2009.06732, 2020 
https://arxiv.org/abs/2009.06732
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In Parallel: Increased Focus on Making Transformers Accessible
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next word in the sequence. The decoder, therefore, takes
inputs from the encoder as well as the previous outputs
to predict the next word of the sentence in the translated
language. To facilitate residual connections the output di-
mensions of all layers are kept the same i.e., d = 512.
The dimensions of query, key and value weight matrices
in multi-head attention are set to dq = 64, dk = 64, dv = 64.

2.5 Bidirectional Representations
The training strategy of the original Transformer model [1]
could only attend to the context on the left of a given word
in the sentence. This is limiting, since for most language
tasks, contextual information from both left and right sides
is important. Bidirectional Encoder Representations from
Transformers (BERT) [3] proposed to jointly encode the right
and left context in a sentence, to learn feature representation
for textual data in an unsupervised manner. To enable
bidirectional training, [3] basically introduced two pretext
tasks: Masked Language Model and Next Sentence Prediction.
The model pre-trained on these pretext tasks in an unsuper-
vised manner was then fine-tuned for the downstream task.
For this purpose, task-specific additional output module is
appended to the pre-trained model, and the full model is
fine-tuned end-to-end.

The network architecture of the base BERT [3] model is
based upon the original Transformer model in [1] and is
similar to GPT [4]. The core contribution of BERT [3] is the
pretext task definition, which enables bidirectional feature
encoding in an unsupervised manner. To this end, BERT
[3] proposed two strategies: (1) Masked Language Model

(MLM) - A fixed percentage (15%) of words in a sentence
are randomly masked and the model is trained to predict
these masked words using cross-entropy loss. In predicting
the masked words, the model learns to incorporate the
bidirectional context. (2) Next Sentence Prediction (NSP) -

Given a pair of sentences, the model predicts a binary label
i.e., whether the pair is valid from the original document or
not. The training data for this can easily be generated from
any monolingual text corpus. A pair of sentences A and B
is formed, such that B is the actual sentence (next to A) 50%
of the time, and B is a random sentence for other 50% of the
time. NSP enables the model to capture sentence-to-sentence
relationships which are crucial in many language modeling
tasks such as Question Answering and Natural Language
Inference (NLI).

3 TRANSFORMERS & SELF-ATTENTION IN VISION

We provide an overview of main themes followed in Trans-
formers designed for vision applications in Fig. 3. Exist-
ing frameworks generally apply global or local attention,
leverage CNN representations or utilize matrix factorization
to enhance design efficiency and use vectorized attention
models. We explain these research directions below in the
form of task-specific groups of approaches.

3.1 Transformers for Image Recognition
Convolution operation is the work-horse of the conven-
tional deep neural networks used in computer vision and
it brought breakthroughs such as solving complex image
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Fig. 3. A taxonomy of self-attention design space.

recognition tasks on high dimensional datasets like Im-
ageNet [52]. However, convolution also comes with its
shortcomings e.g., it operates on a fixed-sized window thus
unable to capture long-range dependencies such as arbitrary
relations between pixels in both spatial and time domains
in a given video. Furthermore, convolution filter weights
remain fixed after training so the operation cannot adapt
dynamically to any variation to the input. In this section, we
review methods that alleviate the above-mentioned issues in
conventional deep neural networks by using Self-attention
operations and Transformer networks (a specific form of
self-attention). There are two main design approaches to
self-attention. (a) Global self-attention which is not restricted
by the size of input features e.g., [53] introduces a layer
inspired from non-local means that applies attention to the
whole feature map while [54] reduces the computational
complexity of non-local operation [53] by designing sparse
attention maps. (b) Local self-attention tries to model re-
lation within a given neighborhood e.g., [55] proposed to
restrict the attention within a specific window around a
given pixel position to reduce the computational overhead.
Similarly, [53] further improved local self-attention such
that it can dynamically adapt its weight aggregation to
variations in the input data/features.

Recently, global self-attention has been successfully ap-
plied by using NLP Transformer encoder directly on image
patches [9], removing the need for handcrafted network
design. Transformer is data-hungry in nature e.g., a large-
scale dataset like ImageNet is not enough to train vision
transformer from scratch so [10] proposes to distill knowl-
edge from a CNN teacher to a student vision transformer
which allowed Transformer training on only ImageNet
without any additional data. Here, we describe key insights
from different methods based on local/global self-attention
including Transformers specifically designed to solve the
image recognition task.

3.1.1 Non-local Neural Networks
This approach is inspired by non-local means operation
[56] which was mainly designed for image denoising. This
operation modifies a given pixel in a patch with a weighted
sum of other pixel values in an image. However, instead

Khan, Naseer, Hayat, Zamir, Khan, Shah. Transformers in Vision: A Survey. arXiv preprint arXiv:2101.01169. 2021 Jan. 
https://arxiv.org/abs/2009.06732

"Transformers for Computer Vision" is a Fast Growing Field
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• EfficientNetV2:  
Large improvement over EfficientNets V1  
Also beats Visual Transformers ;)


• Introduces  
new ops such as Fused-MBConv  
progressive increasing of image size during training  
    -> adaptively adjusting regularization via dropout and data augmentation

EfficientNetV2: Smaller Models and Faster Training

Mingxing Tan
1

Quoc V. Le
1

Abstract

This paper introduces EfficientNetV2, a new fam-
ily of convolutional networks that have faster
training speed and better parameter efficiency
than previous models. To develop this family of
models, we use a combination of training-aware
neural architecture search and scaling, to jointly
optimize training speed and parameter efficiency.
The models were searched from the search space
enriched with new ops such as Fused-MBConv.
Our experiments show that EfficientNetV2 mod-
els train much faster than state-of-the-art models
while being up to 6.8x smaller.

Our training can be further sped up by progres-
sively increasing the image size during training,
but it often causes a drop in accuracy. To com-
pensate for this accuracy drop, we propose an
improved method of progressive learning, which
adaptively adjusts regularization (e.g., dropout
and data augmentation) along with image size.

With progressive learning, our EfficientNetV2 sig-
nificantly outperforms previous models on Im-
ageNet and CIFAR/Cars/Flowers datasets. By
pretraining on the same ImageNet21k, our Effi-
cientNetV2 achieves 87.3% top-1 accuracy on
ImageNet ILSVRC2012, outperforming the re-
cent ViT by 2.0% accuracy while training 5x-11x
faster using the same computing resources. Code
will be available at https://github.com/
google/automl/efficientnetv2.

1. Introduction

Training efficiency is important to deep learning as the sizes
of models and training data are increasingly larger. For ex-
ample, GPT-3 (Brown et al., 2020), with an unprecedented
model and training data sizes, demonstrates the remarkable
capability in few shot learning, but it requires weeks of train-
ing with thousands of GPUs, making it difficult to retrain or
improve.

1Google Research, Brain Team. Correspondence to: Mingxing
Tan <tanmingxing@google.com>.
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(a) Training efficiency.

EfficientNet ResNet-RS DeiT/ViT EfficientNetV2
(2019) (2021) (2021) (ours)

Top-1 Acc. 84.3% 84.0% 83.1% 83.9%
Parameters 43M 164M 86M 24M

(b) Parameter efficiency.

Figure 1. ImageNet ILSVRC2012 top-1 Accuracy vs. Training

Time and Parameters – Models tagged with 21k are pretrained
on ImageNet21k, and others are directly trained on ImageNet
ILSVRC2012. Training time is measured with 32 TPU cores. All
EfficientNetV2 models are trained with progressive learning. Our
EfficientNetV2 trains 5x - 11x faster than others, while using up to
6.8x fewer parameters. Details are in Table 7 and Figure 5.

Training efficiency has gained significant interests recently.
For instance, NFNets (Brock et al., 2021) aim to improve
training efficiency by removing the expensive batch normal-
ization; ResNet-RS (Bello et al., 2021) improves training
efficiency by optimizing scaling hyperparameters; Lambda
Networks (Bello, 2021) and BotNet (Srinivas et al., 2021)
improve training speed by using attention layers in Con-
vNets; Vision Transformers (Dosovitskiy et al., 2021) im-
proves training efficiency on large-scale datasets by using
Transformer blocks. However, these methods often come
with expensive overhead on parameter size, as shown in
Figure 1(b).

In this paper, we use an combination of training-aware neu-
ral architecture search (NAS) and scaling to improve both
training speed and parameter efficiency. Given the parame-
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CNNs remain relevant for image data
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