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Part 1: Technologies and Tools
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Python for-loops are bad

def for_loop(w, Xx):
z = 0.
for i in range(len(x)):
z += x[1] * wlil]
return z

Z = inwi+b
X = [Ley 2y 3.

[ bias = 0.1
w = [bias, 0.3, 0.5]

print(for_loop(w, x))

2.2



Python for-loops are bad:
Use SIMD & vectorized code whenever you can

import torch

def dot_product_in_pytorch(w, x):
return x.dot(w)
Z = inwi+b

; X t, wt = torch.tensor(x), torch.tensor(w)
print(dot_product_in_pytorch(x_t, w_t))

T
= X W tensor(2.2000)



For-loops vs. Vectorized Code

%timeit -r 100 -n 1 -q -0 for_loop(w, Xx)

<TimeitResult : 33.8 ms * 1.43 ms per loop (mean * std. dev.
%timeit -r 100 -n 1 -q -0 dot_product_in_pytorch(w_t, x_t)

<TimeitResult : 22.4 ps +* 25.1 us per loop (mean * std. dev.

Dot product is approx.1500x faster
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Can we speed this up further using GPUs?

%stimeit -r 100 -n 1 -q -0 dot_product_in_pytorch(w_t, x_t)

<TimeitResult : 22.4 ps +* 25.1 us per loop (mean * std. dev. of 100 runs,

x_t.to(torch.device('cuda:0"'))
w_t.to(torch.device('cuda:0'))

X_cuda
w_cuda

torch.backends.cudnn.benchmark = True

%timeit -r 100 -n 1 -q -0 dot_product_in_pytorch(w_cuda, x_cuda)

<TimeitResult : 61 ps = 13.8 us per loop (mean * std. dev. of 100 runs, 1

GPU is approx. 3x slower
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Can we speed this up further using GPUs?
(Yes, If the data / computation is large)

X, W= torch.rand((1000, 10000)), torch.rand((10000, 100))

%timeit -r 100 -n 1 -q -0 X.mm(W)

<TimeitResult : 4.38 ms + 1.59 ms per loop (mean * std. dev.

X.to(torch.device('cuda:0'))
W.to(torch.device('cuda:0"'))

X _cuda
W cuda

%timeit -r 100 -n 1 -q -0 X_cuda.mm(W_cuda)

<TimeitResult : 18.6 us * 26.5 us per loop (mean * std. dev.

GPU is approx. 230x faster

9



Dask

Pandas Scikit-Learn Network-X
Analytics Machine Learning Graph Analytics

PyTorch Chainer MxNet Matplotlib Seaborn

Deep Learning Visualization

* I
GPU Memory

Figure 1. The standard Python ecosystem for machine learning, data science, and scientific computing.

Sebastian Raschka, Joshua Patterson, and Corey Nolet (2020)

Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence

Information 2020, 11, 193
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Data Preparation — Model Training Visualization

Dask

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

I

cuDF culO CUML cuGraph
Analytics Machine Learning Graph Analytics

>>> Afaal GPU Memory
Arrow

Figure 4. RAPIDS is an open source effort to support and grow the ecosystem of GPU-accelerated
Python tools for data science, machine learning, and scientific computing. RAPIDS supports existing
libraries, fills gaps by providing open source libraries with crucial components that are missing from

the Python community, and promotes cohesion across the ecosystem by supporting interoperability
across the libraries.

Sebastian Raschka, Joshua Patterson, and Corey Nolet (2020)

Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
Information 2020, 11, 193
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_ NVIDIA GeForce® Sebastian Raschka. Python

Extreme Editio el Machine Learning.
 Base Clock Frequency 3.0 GHz 1.0 GHz Birmingham, UK: Packt
| Fores g it | Publishing, 2015
Memory Bandwidth 68 GB/s 336.5 GB/s
\ Floating-Point Calculations 354 GFLOPS 5632 GFLOPS
| Cost $1000.00 $700.00

Sebastian Raschka and Vahid

Intel® Core™ i7-6900K NVIDIA GeForce®

gl Processor Extreme Ed. GTX™ 1080 Ti Mirjalili. Python Machine
Base Clock Frequency 3.2 GHz < 1.5 GHz Learning an Ed
Cores 8 3584 | : : _
| Memory Bandwidth 64 GB/s 484 GB/s | B | rm_l ng_ham’ U K PaC kt
Floating-Point Calculations 409 GFLOPS | 1300 GFLOPS | Publishing, 2017
Image: https://www.amazon.com/Nvidia-GEFORCE-GTX-1080-Ti/dp/BO6XH5ZCLP | Cost ~ $1000.00 ~ $700.00

e A eI Sebastian Raschka and Vahid

Specifications : :
X-series Processor RTX™ 2080 Ti C e ey :
Base Clock Frequency 3.1 GHz 1.35 GHz Mirjalili. Python Machine
Cores 16 (32 threads) 4352 Learning 3rd Ed. Birmingham,
Memory Bandwidth 79.47 GB/s 616 GB/s ] . -
Floating-Point Calculations 1290 GFLOPS 13400 GFLOPS U K ] PaC kt P u bl IS h N g ] 20 19
Image: https://www.nvidia.com/en-in/geforce/graphics-cards/rtx-2080-ti/ COSC o~ $|700.00 - $| ' 00.00
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FP32 TensorFlow Training Performance >\ L bd
| = Same Speed as RTX 2080 11, 2= Twice as Fast as RTX 2080 Ti, Etc. L "

B ResNet50
RTX 2080 Ti ~$1 ,100; 11 Gb Memory B ResNet152
B InceptionV3
RTX 2080 -~ 0.73% B InceptionV4
B VGG16
THAN RTX e 15X B AlexNet
@ SSD300
- Titan V E ‘ 1.04x
0]
V100 1.37X
Titan Xp 0.82x ~$8,000, 16 Gb Memory
GTX 1080 Ti 0.74x
0 0.5 1 1.5

Performance Multiple Over to RTX 2080 Ti

Source: https://lambdalabs.com/blog/2080-ti-deep-learning-benchmarks/
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Developing Specialized Hardware

Cloud TPU

<

oot M Meti ]
A 4 v -

Google's 180 TFLOPS Cloud TPU card.

https://arstechnica.com/gadgets/2018/07/the-ai-revolution-has-spawned-a-new-chips-arms-race/

Arm Machine Learning.Processor

Industry-leading performance and efficiency forinference at the edge.

https://developer.arm.com/products/processors/machine-learning/arm-ml-processor
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Opinion: New Nvidia chip
extends the company’s lead in
graphics, artificial intelligence

By Ryan Shrout

OoEEEm

The only question that remains: How big is Nvidia's advantage over its
rivals?
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https://www.marketwatch.com/story/new-nvidia-chip-extends-the-companys-lead-in-
graphics-artificial-intelligence-2018-08-14

TECHNOLOGY NEWS IOVEMBFER 282018 / 225¢ PM | 2 MONTHS AGO

Amazon launches machine
learning chip, taking on Nvidia,
Intel

https://www.reuters.com/article/us-amazon-com-nvidia/amazon-launches-machine-learning-chip-
taking-on-nvidia-intel-idUSKCN1NX2PY



Deep Learning frameworks

The new "Emacs vs VIM"

Which DL framework
IS most popular?




The https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-
Gradient tensorflow-dominates-industry/

PyTorch vs TensorFlow: Number of Unique Mentions
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PyTorch vs TensorFlow: Number of Unlque Mentions
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"Most I've spoken to (and I'm from a background in ML academia); PyTorch is by a
very slim margin faster than TensorFlow 2.0 in our experiences when you run

TensorFlow In non-Eager mode. However, since Eager mode Is now enabled by
default in TensorFlow 2.0; PyTorch is significantly faster."

https://www.reddit.com/r/MachinelLearning/comments/f19dj4/d_tensorflow_20_v_pytorch_performance_question/

18



Average inference time
PyTorch CPU Average inference time (s) 0.748
PyTorch CPU + TorchScript Average inference time (s) 0.625

PyTorch GPU Average inference time (s) 0.046
PyTorch GPU + TorchScript Average inference time (s) 0.036
Tensorflow CPU Average inference time (s) 0.823

TensorFlow GPU Average inference time (s) 0.043
TensorFlow GPU + XLA Average inference time (s) 0.035

Source: https://medium.com/huggingface/benchmarking-transformers-pytorch-and-tensorflow-e2917fb891c2
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In: import tensorflow as tf

4 A Defining the graph In: import torch
g = tf.Graph()

with g.as_default(): w = torch.tensor(2.0, requires_grad=True)
x = tf.placeholder(dtype=tf.float32, b = torch.tensor(1.5)
shape=(None), name='inputs') X = torch.tensor(1.0)

w = tf.Variable(2.0, name='weight')
b = tf.Variable(1.5, name='bias')
Z = wkx + b Z = wkx + b
dz_ w = tf.gradients(z, w) print(f'wkx + b = {z}')
init = tf.global_variables_initializer()
. i = = _/ nitializ ! z.backward()
NnictialiZin n .
with tf.Session(graph=g) as sess: 4 _ €4 print(f'oz/ow = {w.grad}"')
sess.run(init) evaluating the graph

result = sess.run(z, feed_dict={'inputs:0':1.0}) ] _
partial_d = sess.run(dz_w, feed_dict={'inputs:0':1.0}) Out: wkX + b = 3.
print(f'wkx + b = {result}"') 0z/ow = 1.0
print(f'ez/ow = {partial_d}"')

5

Out: wkx + b = 3.5
0z/ow = [1.0]

Figure 7. Comparison between (a) a static computation graph in TensorFlow 1.15 and (b) an imperative
programming paradigm enabled by dynamic graphs in PyTorch 1.4.

Sebastian Raschka, Joshua Patterson, and Corey Nolet (2020)
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence

Information 2020, 11, 193
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DL Frameworks are
converging

\

Two ways for turning a Toore Parse

PyTorch model
Into a static graph for
optimization and

"Intermediate" representation (IR)
<=> "static graph"

deployment:

a) Tracing ¥
b) Scri ptl ng Execute Optimize Lower

Image Source: https://thegradient.pub/state-of-mi-
frameworks-2019-pytorch-dominates-research-
tensorflow-dominates-industry/

Compile
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DL Frameworks are
converging

Eager Execution

22
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Challenges

Technologies
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Challenges:

Adding forward-mode autodiff for
efficient higher-order derivatives
(e.g., Hessians)



Composable transformations of
Python+NumPy programs: differentiate,
vectorize, JIT to GPU/TPU, and more

Forward mode AD for PyTorch: https://
github.com/pytorch/pytorch/issues/10223

O PyTorch

julia

Swift

25



April 21, 2020

PyTorch 1.5 released, new and updated APIs including

C++ frontend API parity with Python

https://pytorch.org/blog/pytorch-1-dot-5-released-with-new-and-updated-apis/

torch.autograd.functional.hessian(...)

20
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Challenges:

Adversarial attacks



Phantom of the ADAS:
Phantom Attacks on Driver-Assistance Systems

Ben Nassil, Dudi Nassi!, Raz Ben-Netanel!, Yisroel Mirskym, Oleg Drokin3, Yuval Elovici?

Video Demonstration - https://youtu.be/1cSw4iXYqWI
{nassib,nassid,razx,yisroel,elovici} @post.bgu.ac.il, green@linuxhacker.ru
I Ben-Gurion University of the Negev, ? Georgia Tech,® Independent Tesla Researcher

ABSTRACT

The absence of deployed vehicular communication sys-
tems, which prevents the advanced driving assistance systems
(ADASs) and autopilots of semi/fully autonomous cars to
validate their virtual perception regarding the physical en-
vironment surrounding the car with a third party, has been
exploited in various attacks suggested by researchers. Since
the application of these attacks comes with a cost (exposure
of the attacker’s identity), the delicate exposure vs. application
balance has held, and attacks of this kind have not yet
been encountered in the wild. In this paper, we 1nvestigate a
new perceptual challenge that causes the ADASs and autopi-
lots of semi/fully autonomous to consider depthless objects
(phantoms) as real. We show how attackers can exploit this
perceptual challenge to apply phantom attacks and change

the abovementioned balance, without the need to physically
28

e -

Fig. 1: Perceptual Challenge: Would you consider the projec-
tion of the person (a) and road sign (b) real? Telsa considers
(a) a real person and Mobileye 630 PRO considers (b) a real
road sign.



Fig. 1: Perceptual Challenge: Would you consider the projec-
tion of the person (a) and road sign (b) real? Telsa considers
(a) a real person and Mobileye 630 PRO considers (b) a real

road sign.

29



Cleverhans v3.0.1 FoolBoxv2.3.0 ARTv1.1.0 DEEPSEC (2019) AdvBox v0.4.1

Supported frameworks
TensorFlow yes yes yes no yes
MXNet yes yes yes no yes
PyTorch no yes yes yes yes
PaddlePaddle no no no no yes
(Evasion) attack mechanisms
BLB [163] yes no no yes no
AMD [170] yes no no no no
Z0OO0 [171] no no yes no no
VA [172] yes yes yes no no
AP [173] no no yes no no
STA [174] ho yes yes no no Defense mechan;sm; ’
DTA [175] no no yes no no Foature S e [200] n n
queezing no 0 yes 0 yes
FGSM [176] yes yes yes yes yes Spatial Smoothing [200] no no yes no yes
R+FGSM [177] no no no yes no Label Smoothing [200] no no yes no yes
R+LLC [177] no no no yes no Gaussian Augmentation [201] no no yes no yes
U-MI-FGSM [178] yes yes no yes no Adversarial Training [185] no no yes yes yes
T-MI-FGSM [178] yes yes no yes no Thermometer Encoding [202] no no yes yes yes
BIM [179] no yes yes yes yes NAT [203] no no no yes no
LLC / ILLC [179] no yes no yes no EAT [177] no no no yes no
D [204] no no no yes no
UAP [180] no no yes yes no IGR [205] no o o os o
y
DeepFool [181] yes yes yes yes yes EIT [206] no no yes yes no
NewtonFool [182] no yes yes no no RT [207] no no ho yes no
JSMA [183] yes yes yes yes yes PixelDefend [208] no no yes yes no
CW/CW2 [184] yes yes yes yes yes Regr.-based classfication [209] no no no yes no
PGD [185] yes no yes yes yes JPEG compression [210] no no yes no no
OM [186] no no no yes no
EAD [187] yes yes yes yes no
Boundary Attack [188] no yes yes no no
HopSkipJumpAttack [189] yes yes yes no no
MaxConf [190] yes no no no no
Inversion attack [191] yes yes no no no
SparseL1 [192] yes yes no no no
SPSA [193] yes no no no no
HCLU [194] no no yes no no
ADef [195] no yes no no no
DDNL2 [196] no yes no no no
Local Search [197] no yes no no no
Pointwise attack [198] no yes no no no
GenAttack [199] no yes no no no Machine Learning in Python: Main developments and technology trends in data

science, machine learning, and artificial intelligence (2020). Sebastian Raschka,
Joshua Patterson, and Corey Nolet
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Deep Learning & Ordinal Data

Label extension

30] > |1} ez during training

Age label 0
0 Extended label

@@

ResNet-34
[7x7 conv R [3x3 conv ) /7 o I\ i
' stride=2 E N el stride=|
g J \_ ) \ P .

Input image

—>’LU
Dk

Weight sharing
across ){ — 1tasks

Wenzhi Cao, Vahid Mirjalili, and Sebastian Raschka. "Rank-consistent ordinal regression for neural networks."
arxiv:1901.07884 (2019).
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3.3. Theoretical Guarantees for Classifier Consistency

The following theorem shows that by minimizing the loss
L (Eq. 3), the learned bias units of the output layer are non-
increasing such that by > b, > ... =2 bg_;. Consequently, the
predicted confidence scores or probability estimates of the K —1
tasks are decreasing, 1.e.,

POy’ =1)2P(y”=1)2...2P(*"=1) ()

for all 7, ensuring classifier consistency. Consequently, { ﬂ}f_____‘l'
given by Eq. 4 are also rank-monotonic.

P(y > rank)

P(y > rank)

0.2 -

0.2 -

0.0 -

OR-CNN

10

20

30

40

50

CORAL-CNN

0

10

20

Rank

30

40

Wenzhi Cao, Vahid Mirjalili, and Sebastian Raschka. "Rank-consistent ordinal regression for neural networks."

arXiv:1901.07884 (2019).

33
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Table 2
Average numbers of inconsistencies occurred on the different test datasets for CORAL-CNN and Niu et al’s Ordinal CNN. The penultimate column and last
column list the average numbers of inconsistencies focussing only on the correct and incorrect age predictions, respectively.

CORAL-CNN | Ordinal-CNN [1] Ordinal-CNN [1] Ordinal-CNN [1]
All predictions All predictions Only correct predictions | Only incorrect predictions
Morph
Seed 0 0 2.74 2.02 2.89
Seed 1 0 2.74 2.08 2.88
Seed 2 0 3.00 2.20 3.16
AFAD
Seed 0 0 2.32 1.78 2.40
Seed 1 0 2.35 1.83 2.43
Seed 2 0 2.55 1.97 2.63
UTKFace
Seed 0 0 4.79 3.64 4.92
Seed 1 0 5.73 4.05 3.95
Seed 2 0 5.07 3.84 5.21
CACD
Seed 0 0 5.06 4.55 5.10
Seed 1 0 5.40 4.76 5.44
Seed 2 0 5.56 4.87 5.61

Wenzhi Cao, Vahid Mirjalili, and Sebastian Raschka. "Rank-consistent ordinal regression for neural networks."

arXiv:1901.07884 (2019).
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30] >

Deep Learning & Ordinal Data

| ezZy !
Age label 0

Age prediction errors on the test sets without task ir

0 Extended

|

Ix7

—> | @6
' strid
A ‘ e

Input image

Random MORPH-2
Method Seed MAE RMSE
0 3.40 4.88
1 3.39 4.87
CE-CNN 2 3.37 4.87
AVG = SD | 3.39 +£ 0.02 | 4.89 = 0.01
0 2.98 4.26
OR-CNN 1 2.98 4.26
[1] 2 2.96 4.20
AVG = SD | 2.97 + 0.01 4.24 + 0.03
0 2.68 3.75
CORAL-CNN 1 2.63 3.66
(ours) 2 2.61 3.64
AVG £+ SD | 2.64 = 0.04 | 3.68 + 0.06

S
a

Wenzhi Cao, Vahid Mirjalili, and Sebastian Raschka. "Rank-consistent ordinal regression for neural networks."

arXiv:1901.07884 (2019).
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Transformers

Output

Probabilities
4
Softmax |
Linear |

Add &I Norm J<=

Feed
Forward

4 iy
N | 1
~ “\ | Add & Norm Je=
e
> Add & Noirh Multi-Head
[ Feed ] Attention
Forward N x
\_L),_)
4 t ~

I
| Add &INorm Jom

Masked
Multi-Head
Attention

N> | —{"Add & Norm

Multi-Head
Attention

\_ J
Positional Positional
Encoding Encoding

Input Output
Embeddlng Embedding
Inputs Qutputs
(shifted right)

Figure 1: The Transformer - model architecture.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser £, Polosukhin |. Attention is all you need.
InAdvances in neural information processing systems 2017 (pp. 5998-6008).



New Al fake text generator may be too
dangerous to release, say creators

The Elon Musk-backed nonprofit company OpenAl declines to
release research publicly for fear of misuse

https:// www.theguardian.com/technology/2019/feb/14/elon-
musk-backed-ai-writes-convincing-news-fiction
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"Google researchers have trained a chatbot with uncannily good
conversational skills. The bot, named Meena, is a 2.6 billion parameter
language model trained on 341GB of text data, filtered from public domain
social media conversations. Meena uses a seg2seqg model (the same sort
of technology that powers Google's "Smart Compose” feature in gmail),
paired with an Evolved Transformer encoder and decoder - it's interesting
to see something like this depend so much on a component developed via
neural architecture search.”

https:.//mailchi.mp/jack-clark/import-ai-183-curve-fitting-conversation-with-
meena-gans-paint-a-climate-change-future-and-what-compute-data-arbitrage-
means-for-simulators

39


https://mailchi.mp/jack-clark/import-ai-183-curve-fitting-conversation-with-meena-gans-paint-a-climate-change-future-and-what-compute-data-arbitrage-means-for-simulators
https://mailchi.mp/jack-clark/import-ai-183-curve-fitting-conversation-with-meena-gans-paint-a-climate-change-future-and-what-compute-data-arbitrage-means-for-simulators
https://mailchi.mp/jack-clark/import-ai-183-curve-fitting-conversation-with-meena-gans-paint-a-climate-change-future-and-what-compute-data-arbitrage-means-for-simulators

Human: Hi!

Meena: Hey there! What's up?

Human: Same old, Monday blues...what are you up to?

Meena: I'm procrastinating on a paper I'm supposed to be writing.
Human: are you thinking of pulling an all nighter?

Meena: Possibly. What's your paper on?

Human: Nah, 1 just do the grunge work around here...one day I wish to write a paper
that will change the world!

Meena: What's the topic?
Human: not sure, any suggestions?
Meena: Well what's the assignment on?

Huma n. b I"ea't h lng u nde I Wate I” https://github.com/google-research /

google-research /blob/master/meena/
40 meena.txt
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Image Source: https://medium.com/huggingface/distilbert-8cf3380435b5
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THE COST OF TRAINING NLP MODELS
A CONCISE OVERVIEW

Or Sharir Barak Peleg Yoav Shoham
Al21 Labs Al2l Labs Al21 Labs
ors@ai2l.com barakp@ai2l.com yoavs@ai2l.com
April 2020

http://arxiv.org/abs/2004.08900

Costs: Not for the faint hearted

o $2.5k - $50k (110 million parameter model)
~ $10k - $200k (340 million parameter model)
o $80k - $1.6m (1.5 billion parameter model)
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Recurrent Neural Networks
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Despite LSTM, it may be hard to
memorize long sequences/
sentences (e.g., for language
translation)



Attention Mechanism

- originally developed for language translation;
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

"... allowing a model to automatically (soft-)search for parts of a source

sentence that are relevant to predicting a target word ..."

BLEU score

—
-

—— RNNsearch-50
""" RNNsearch-30

‘traditional” ———

encoder+decoder
RNN

0

-+ RNNenc-50
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10
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Figure 2: The BLEU scores
of the generated translations
on the test set with respect
to the lengths of the sen-
tences. The results are on
the full test set which in-
cludes sentences having un-
known words to the models.



Attention Mechanism

- originally developed for language translation;
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

"... allowing a model to automatically (soft-)search for parts of a source
sentence that are relevant to predicting a target word ..."

Assign attention weight to each word to know how much
‘attention” the model should pay to each word (i.e., for each word,
the network learns a "context")
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Attention Mechanism

- originally developed for language translation:

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

hidden state

attention weight

Assign attention weight to each
word to know how much

"attention” the model should pay to [P R R <R
eaCh WOrd (i-e-, fOr eaCh WOrd, the """ )(1 """""" X2 """""" X3 """""" XT """
netWOrk |eamS d "COnteXt") Figure 1: The graphical illus-

tration of the proposed model
trying to generate the ¢-th tar-
get word y; given a source
sentence (1, X2,...,TT).
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RNN Attention Mechanism
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RNN Attention Mechanism

Computing attention weights
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RNN Attention Mechanism

Computing attention weights
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Self-Attention Mechanism

Attention Is All You Need
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Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N
Advances in neural information processing systems (pp. 5998-6008).
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https://arxiv.org/abs/1706.03762

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In
Advances in neural information processing systems (pp. 5998-6008).
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Figure 1: The Transformer - model architecture.
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AlphaStar applies a transformer torso to the units
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https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
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Transformer on a Diet

Chenguang Wang Zihao Ye Aston Zhang
Zheng Zhang Alexander J. Smola
Amazon Web Services
{chgwang, yveziha, astonz, zhaz, smola}@amazon.com

Abstract size of the model. Therefore a light version of the
standard Transformer architecture 1s expected to

Transformer has been widely used thanks to . q T
relieve the heavy computation 1ssue and compress

its ability to capture sequence information in

an efficient way. However, recent develop- the model to ease the deployment 1n real world
ments, such as BERT and GPT-2, deliver only applications.

heavy architectures with a focus on effective- In this paper, we carefully design several light
ness. In this paper, we explore three caretully- Transformer architectures. The intuition behind the
designed light Transtormer architectures to fig- light Transformers is: preserving the Transformer

ure out whether the Transformer with less

~cromniitatinne ~ranild neadiicre Aamnatitinvia rol

connections that are useful to capture the essential

o O O O o o O O o0 O O O O o O O O

o O O O O

O Og O £
AR A AR ER

(a) Full Transformer. (b) Dilated Transformer. (¢) Dilated Transformer (d) Cascade Transformer.
54 With memory.




Published as a conference paper at ICLR 2018

GRAPH ATTENTION NETWORKS
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Figure 1: Left: The attention mechanism a(Wﬁi, WfL]) employed by our model, parametrized

by a weight vector a € R?¥ ; applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are

concatenated or averaged to obtain ﬁ’l
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Graph Neural Networks -- Why Graphs?
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Sebastian Raschka and Benjamin Kaufman (2020)
Machine learning and Al-based approaches for bioactive ligand discovery
and GPCR-ligand recognition arXiv:2001.06545
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@ PyTorch

geometric

pypl package 1.4.2 § build passing codecov 95% contributions welcome

Documentation | Paper | External Resources

PyTorch Geometric (PyG) is a geometric deep learning extension library for PyTorch.

It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep
learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small
and single giant graphs, multi gpu-support, a large number of common benchmark datasets (based on simple interfaces

to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point
clouds.

https://github.com/rustyis/pytorch geometric
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https://github.com/rusty1s/pytorch_geometric

In detail, the following methods are currently implemented:

SplineConv from Fey et al.: SplineCNN: Fast Geometric Deep Learning with Continuous B-
Spline Kernels (CVPR 2018)

GCNConv from Kipf and Welling: Semi-Supervised Classification with Graph Convolutional
Networks (ICLR 2017)

ChebConv from Defferrard et al.: Convolutional Neural Networks on Graphs with Fast
Localized Spectral Filtering (NIPS 2016)

NNConv from Gilmer et al.: Neural Message Passing for Quantum Chemistry (ICML 2017)

CGConv from Xie and Grossman: Crystal Graph Convolutional Neural Networks for an
Accurate and Interpretable Prediction of Material Properties (Physical Review Letters 120,
2018)

ECConv from Simonovsky and Komodakis: Edge-Conditioned Convolution on Graphs (CVPR
2017)

GATConv from VeliCkovi¢ et al.: Graph Attention Networks (ICLR 2018)

SAGEConv from Hamilton et al.: Inductive Representation Learning on Large Graphs (NIPS
2017)

GraphConv from, e.g., Morris et al.: Weisfeiler and Leman Go Neural: Higher-order Graph
Neural Networks (AAAl 2019)

GatedGraphConv from Li et al.: Gated Graph Sequence Neural Networks (ICLR 2016)
GINConv from Xu et al.: How Powerful are Graph Neural Networks? (ICLR 2019)

ARMAConv from Bianchi et al.: Graph Neural Networks with Convolutional ARMA Filters
(CoRR 2019)

SGConv from Wu et al.: Simplifying Graph Convolutional Networks (CoRR 2019)

APPNP from Klicpera et al.: Predict then Propagate: Graph Neural Networks meet
Personalized PageRank (ICLR 2019)

AGNNConv from Thekumparampil et al.: Attention-based Graph Neural Network for Semi-
Supervised Learning (CoRR 2017)
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TAGConv from Du et al.: Topology Adaptive Graph Convolutional Networks (CoRR 2017)
RGCNConv from Schlichtkrull et al.: Modeling Relational Data with Graph Convolutional
Networks (ESWC 2018)

SignedConv from Derr et al.: Signed Graph Convolutional Network (ICDM 2018)

DNAConv from Fey: Just Jump: Dynamic Neighborhood Aggregation in Graph Neural
Networks (ICLR-W 2019)

EdgeConv from Wang et al.: Dynamic Graph CNN for Learning on Point Clouds (CoRR, 2018)

PointConv (including Iterative Farthest Point Sampling, dynamic graph generation based on
nearest neighbor or maximum distance, and k-NN interpolation for upsampling) from Qi et
al.: PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation (CVPR
2017) and PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
(NIPS 2017)

XConv from Li et al.: PointCNN: Convolution On X-Transformed Points (official
implementation) (NeurlPS 2018)

PPFConv from Deng et al.: PPFNet: Global Context Aware Local Features for Robust 3D Point
Matching (CVPR 2018)

GMMConv from Monti et al.: Geometric Deep Learning on Graphs and Manifolds using
Mixture Model CNNs (CVPR 2017)

FeaStConv from Verma et al.: FeaStNet: Feature-Steered Graph Convolutions for 3D Shape
Analysis (CVPR 2018)

HypergraphConv from Bai et al.: Hypergraph Convolution and Hypergraph Attention (CoRR
2019)

A Metalayer for building any kind of graph network similar to the TensorFlow Graph Nets
library from Battaglia et al.: Relational Inductive Biases, Deep Learning, and Graph Networks
(CoRR 2018)

GlobalAttention from Li et al.: Gated Graph Sequence Neural Networks (ICLR 2016)
Set2Set from Vinyals et al.: Order Matters: Sequence to Sequence for Sets (ICLR 2016)
Sort Pool from Zhang et al.: An End-to-End Deep Learning Architecture for Graph
Classification (AAAI 2018)

Dense Differentiable Pooling from Ying et al.: Hierarchical Graph Representation Learning
with Differentiable Pooling (NeurlPS 2018)

Dense MIinCUT Pooling from Bianchi et al.: MinCUT Pooling in Graph Neural Networks (CoRR
2019)
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Self-Supervised Learning



Self-Supervised Learning:
Image Colorization

Zhang R, Isola P, Efros AA. Colorful image colorization.
InEuropean conference on computer vision 2016 Oct 8 (pp.
649-666). Springer, Cham.

Larsson G, Maire M, Shakhnarovich G. Learning representations
for automatic colorization. InEuropean Conference on Computer
Vision 2016 Oct 8 (pp. 577-593). Springer, Cham.

Vondrick C, Shrivastava A, Fathi A, Guadarrama S, Murphy K.
Tracking emerges by colorizing videos. InProceedings of the
European Conference on Computer Vision (ECCV) 2018 (pp.
391-408).

o1

Reference Colors Target Colors

Fig. 1. Self-supervised Tracking: We capitalize on large amounts of unlabeled video
to learn a self-supervised model for tracking. The model learns to predict the target
colors for a gray-scale input frame by pointing to a colorful reference frame, and copying
the color channels. Although we train without ground-truth labels, experiments and
visualizations suggest that tracking emerges automatically in this model.



Self-Supervised Learning:
Inpainting

Pathak D, Krahenbuhl P, Donahue J, Darrell
T, Efros AA. Context encoders: Feature
learning by inpainting. InProceedings of the

IEEE conference on computer vision and
pattern recognition 2016 (pp. 2536-2544).

(c) Context Encoder (d) Context Encoder
(L2 loss) (L2 + Adversarial loss)
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Self-Supervised Learning:
Jigsaw Puzzles & Context Predictions

Noroozi M, Favaro P. Unsupervised learning of visual
representations by solving jigsaw puzzles. In European
Conference on Computer Vision 2016 Oct 8 (pp. 69-84). Springer,
Cham.

Doersch C, Gupta A, Efros AA. Unsupervised visual e __ ST TR
representation learning by context prediction. InProceedings

of the IEEE International Conference on Computer Vision 2015 vy | 6 _ S 5
(pp. 1422-1430). | et e

Figure 1. Our task for learning patch representations involves ran-
domly sampling a patch (blue) and then one of eight possible
neighbors (red). Can you guess the spatial configuration for the
two pairs of patches? Note that the task is much easier once you
have recognized the object!

1912 dog, 1z W3 wonog 1) Ay Jomsuy
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Self-Supervised Learning:
Recognizing Artifacts

Jenni S, Favaro P. Self-supervised feature
learning by learning to spot artifacts. In
Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition
2018 (pp. 2733-2742).

Figure 1. A mixture of real images (green border) and images with

synthetic artifacts (red border). Is a good object representation
necessary to tell them apart?
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Half of Americans have decided not to
use a product or service because of
privacy concerns

https://www.pewresearch.org/fact-tank/2020/04/14/half-of-americans-have-decided-not-to-
use-a-product-or-service-because-of-privacy-concerns/
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~2018-present:
Increasing focus on
user privacy

Target
Labels

Input
Image

Vahid Mirjalili, Sebastian Raschka, Arun Ross (2020)

PrivacyNet: Semi-Adversarial Networks for Multi-attribute Face Privacy

arXiv:2001.00561
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Al / DL and the "Small Data" Bottleneck

One- and few-shot
learning (train on
many tasks with

few examples per

class)

Transfer learning

(pre-train on
related dataset)
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